孙天宇
- 作品数:2 被引量:13H指数:2
- 供职机构:湖南大学电气与信息工程学院更多>>
- 发文基金:国家教育部博士点基金湖南省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- OPTICS聚类与目标区域概率模型的多运动目标跟踪被引量:6
- 2015年
- 目的针对多运动目标在移动背景情况下跟踪性能下降和准确度不高的问题,本文提出了一种基于OPTICS聚类与目标区域概率模型的方法。方法首先引入了Harris-Sift特征点检测,完成相邻帧特征点匹配,提高了特征点跟踪精度和鲁棒性;再根据各运动目标与背景运动向量不同这一点,引入了改进后的OPTICS加注算法,在构建的光流图上聚类,从而准确的分离出背景,得到各运动目标的估计区域;对每个运动目标建立一个独立的目标区域概率模型(OPM),随着检测帧数的迭代更新,以得到运动目标的准确区域。结果多运动目标在移动背景情况下跟踪性能下降和准确度不高的问题通过本文方法得到了很好地解决,Harris-Sift特征点提取、匹配时间仅为Sift特征的17%。在室外复杂环境下,本文方法的平均准确率比传统背景补偿方法高出14%,本文方法能从移动背景中准确分离出运动目标。结论实验结果表明,该算法能满足实时要求,能够准确分离出运动目标区域和背景区域,且对相机运动、旋转,场景亮度变化等影响因素具有较强的鲁棒性。
- 孙天宇孙炜薛敏
- 关键词:计算机视觉图像处理多运动目标跟踪聚类
- 基于支持向量机优化的行人跟踪学习检测方法被引量:7
- 2016年
- 提出一种基于SVM(Support Vector Machine)优化的TLD(Track-LearningDetection)行人检测跟踪算法.将行人作为正样本,背景作为负样本,提取出行人的HOG特征并投入线性SVM中进行训练,得到行人检测分类器,并标定出目标区域,实现行人自动识别;然后在TLD算法的基础上对行人进行跟踪和在线学习,估计检测出的正负样本并实时修正检测器在当前帧中的误检,利用相邻帧间特征点配准剔除误配点,同时更新跟踪器数据,以避免后续出现类似错误.实验表明,该算法能够适应遮挡变化且自动识别并稳定跟踪目标行人,较传统跟踪算法具有更强的鲁棒性.
- 孙炜薛敏孙天宇胡梦云吕云峰
- 关键词:支持向量机TLD