鉴于目前散货码头运用智能视频监控系统时,由于不同方向人形的方向梯度直方图(Histogram of Oriented Gradient,HOG)特征存在较大的变化,使得用传统方法训练获得的少量特异性特征不足以支撑人形的有效分类,因此提出一种基于Ada Boost的针对不同姿势HOG特征的二级分类方法.首先将样本快速分为正(背)面人形和侧面人形,组成第一级分类;然后通过分别为两类样本训练子分类器组成第二级分类;第二级分类对人形进行识别,并对结果进行融合.以天津港干散货码头无人作业区为背景,完成一组人形识别实验.实验结果表明,相较于传统方法,该方法对正(背)面人形具有更高的识别率.二级分类方法整体上提高了人形识别的识别率.
为改善以人工为主的传统监控系统,在天津港煤码头无人区运用智能视频监控技术进行智能人形识别监控研究.该技术利用优化的方向梯度直方图(Histogram of Oriented Gradient,HOG)算法快速对人体轮廓进行描述;结合基于港口实际场景训练得到的支持向量机分类器,标定出图像中有人的区域.在天津港煤码头无人区的现场实验表明,该技术对一幅320×240像素的图像的检测时间小于200 ms,满足港口监控实时性的要求.对具有复杂背景的监控区域,该技术能够高效地进行人形目标的匹配与识别,从而使安全得到更有效的保障.