Improved waveguide designs for 9.0μm GaAs-based quantum cascade laser (QCL) structures are presented. Modal losses and confinement factors are calculated for TM modes with the transfer matrix method (TMM) and effective index method (EIM). The thicknesses of the cladding layer and waveguide layer, the ridge-width, and the cavity length are all taken into account. Appropriate thicknesses of epilayers are given with lower threshold gain and more economical material growth time.
An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22gm-wide and 2mm-long epilayer-up bonded device.