Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs complexes are 218.87, 219.48, 159.18, and 143.05kJ/mol (MP2/6-311++G(d, p)), respectively. The relative stabilities of the four complexes increased in the order: CH3+ … BrCN〈CH3+…- BrNC〈CH3+… BrH≈CH3+ …BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3e. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3+. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content.