采用简单团簇模型结合密度泛函理论研究了CH3OH在Ga-rich Ga As(001)-(4×2)表面上的吸附与解离过程.计算结果表明,CH3OH在Ga-rich Ga As(001)-(4×2)表面上首先会形成两种化学吸附状态,然后CH3OH经解离生成CH3O自由基和H原子吸附在表面不同位置上.通过比较各个吸附解离路径,发现解离后的H原子相对更容易吸附在位于表面第二层紧邻的As原子上.
The potential energy profile of the reaction between the atomic oxygen radical anion and acetonitrile has been mapped at the G3MP2B3 level of theory. Geometries of the reactants, products, intermediate complexes, and transition states involved in this reaction have been optimized at the (U)B3LYP/6-31+G(d,p) level, and then their accurate relative energies have been improved using the G3MP2B3 method. The potential energy profile is confirmed via intrinsic reaction coordinate calculations of transition states. Four possible production channels are examined respectively, as H+ transfer, H-atom transfer, H2+ transfer, and bi- molecular nucleophilic substitution (SN2) reaction pathways. Based on present calculations, the H2+ transfer reaction is major among these four channels, which agrees with previous experimental conclusions.