Arrays of low-dimensional molecular crystals of square columns(1-D)and nanolamellae(2-D)of Zn[TCNQ]_(2)(H_(2)O)_(2)with large areas(up to 1020 cm^(2))have been synthesized by controlled addition of water to Zn and TCNQ.Based on the ability to accurately control the reaction,a new moisture and water indicator has been developed.The simple method,the large areas of material prepared,the fine size tuning,and the typical semiconductor behavior of the resulting low-dimensional molecular materials promise applications in molecular electronics as well as nanoelectronics.The system is an effective indicator for the detection of traces of water and moisture.
The electron-acoustic phonon scattering for charge transport in organic semiconductors has been studied by first-principles density functional theory and the Boltzmann transport equation with relaxation time approximation. Within the framework of deformation-potential theory, the electron-longitudinal acoustic phonon scattering probability and the corresponding relaxation time have been obtained for oligoacene single crystals (naphthalene, anthracene, tetracene and pentacene). Previously, the electron-optic phonon scattering mechanism has been investigated through Holstein-Peierls model coupled with DFT calculations for naphthalene. Numerical results indicate that the acoustic phonon scattering intensity is about 3 times as large as that for the optic phonon and the obtained mobility is in much better agreement with the result of the experiment done for ultrapure single crystals. It is thus concluded that for closely packed molecular crystal where the electron is partly delocalized, acoustic phonon scattering mechanism prevails in the charge transport. Moreover, it is found that the intrinsic electron mobility is even larger than hole mobility. A frontier orbital overlap analysis can well rationalize such behavior.
Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic devices and probing the structureproperty relationships.This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures,including vapor phase growth methods and solution-processed methods,and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.
FU XiaoLong,WANG ChengLiang,LI RongJin,DONG HuanLi & HU WenPing Beijing National Laboratory for Molecular Sciences,Key Laboratory of Organic Solids,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.
Copper phthalocyanine (CuPc) nanoribbon field-effect transistors were implemented as chemical sensors. They showed fast response and high reversibility in the detection of the tetrahydrofuran atmosphere at room temperature. The drain current of the field-effect transistor sensor decreased from 6.7 to 0.2 nA when the transistor was measured under the tetrahydrofuran atmosphere. The sensor was self-refreshable in a few minutes. These results demonstrate that the organic single crystalline nanoribbon transistors could effectively act as chemical sensors.
The assembling behavior and electronic properties of asymmetric tris(phthalocyaninato)lutetium triple-decker sandwich complex molecules(Lu2Pc3)on highly oriented pyrolytic graphite(HOPG)surfaces have been studied by scanning tunneling microscopy/spectroscopy(STM/STS)methods.Phase transitions were observed at different bias polarities,involving an ordered packing arrangement with fourfold symmetry at negative bias and an amorphous arrangement at positive bias.Molecular switching behaviour for individual Lu2Pc3 molecules was reported here according to the bias-polarity-induced flipping phenomena and the peak shift in dI/dV versus V curves at different voltage scanning directions.The sensitive response of the strong intrinsic molecular dipole to an external electric field is proposed to be responsible for molecular switching of Lu_(2)Pc_(3)at the solid/liquid interface.
Xianghua KongShengbin LeiYanlian YangKe DengGuicun QiChen Wang
The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters(VmOn+) toward acetylene(C2H2) molecules under gas phase(P,~ 1.14 kPa),under near room temperature(T,~ 350 K) conditions.Association products,VmOnC2H2+(m,n = 2,4;2,6;3,7―8;4,9―11;5,12―13;6,13―16,and 7,17),are observed.The oxidation of C2H2 by(V2O5)+n(n = 1―3) is experimentally identified.The reactivity of(V2O5)+ n decreases as n increases.Density functional theory(DFT) calculations were carried out to interpret the reaction mechanisms.The DFT results indicate that a terminal oxygen atom from V2O5+ can transfer overall barrierlessly to C2H2 at room temperature,which is in agreement with the experimental observation.Other experimental results such as the observation of V2O6C2H+2 and non-observation of V2O7,8C2H+2 in the experiments are also well interpreted based on the DFT calculations.The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.
The wettability of solid surfaces has attracted extensive interest in both theoretical research and industrial applications. This paper reviews recent research progress in the fabrication and applications of the colloidal crystals with special wettability. Based on the modified equation of Wenzel and Cassie, the colloidal crystals with special wettability have been obtained by either application of the intrinsic rough structure or modification of the surface chemical composition. Some typical applications of colloidal crystals with special wettability have also been demonstrated.
WANG JingXiaZHANG YouZhuanZHAO TianYiSONG YanLinJIANG Lei