搜索到276295篇“ DYNAMICS“的相关文章
Land Use and Gully Dynamics in the Kourfa Watershed, Matankari (Southwest Niger)
2024年
The main consequences of climate change in the Sahel have been the metamorphosis of surface conditions. These metamorphoses have resulted in surface degradation, of which silting up of watersheds is the main phenomenon. The objective of this study is to assess the environmental trends of the Kourfa pond watershed. The study is based on diachronic mapping with Landsat satellite images and Google Earth images, over the period 1986 to 2021. The study reveals that vegetation (whose rate of regression doubled between 1986 and 2021) has decreased to the benefit of crop areas (whose rate of increase multiplied by 3.61 between 1986 and 2021). Bare soil and encrusted areas have also decreased, with regression rates almost double than those of 1986. In addition, the Kourfa waterholes have experienced two types of changes over 35 years: one progressive between 2011 and 2016 and the other regressive between 2001 and 2021 compared to 1986. The ravine network has been multiplied by a factor of 2.4, with density more than doubled and the connectivity of the hydrographic networks has risen from 2 to 4, with significant bank recession. This dynamic of the Kourfa pond is linked to the high drainage, the increasing complexity of the gully network and the erosion due to the retreat of the watershed banks, all of which contribute to the silting-up of the Kourfa watershed.
Bachirou Hamadou YounoussaTahirou Hassane YaouBouba HassaneAbass Kadade SabouAbdoulkader Moussa IssakaAmadou Abdourhamane ToureZibo Garba
关键词:DYNAMICSWATERSHEDNIGER
Organization of microtubule plus-end dynamics by phase separation in mitosis
2024年
In eukaryotes,microtubule polymers are essential for cellular plasticity and fate decisions.End-binding(EB)proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis.Here,we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid–liquid phase separation to compartmentalize the kinetochore–microtubule plus-end machinery,ensuring accurate kinetochore–microtubule interactions during chromosome segregation in mitosis.Perturbation of EB1–TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos.Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis,and persistent acetylation at Lys220 attenuates phase separation of the EB1-mediated complex,dissolves droplets in vitro,and harnesses accurate chromosome segregation.Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.
Fengrui YangMingrui DingXiaoyu SongFang ChenTongtong YangChunyue WangChengcheng HuQing HuYihan YaoShihao DuPhil YYaoPeng XiaGregory Adams JrChuanhai FuShengqi XiangDan LiuZhikai WangKai YuanXing Liu
关键词:MITOSISACETYLATION
Simulating the Dynamics of Bimetallic Clusters Deposited onto a Surface Using Molecular Dynamics
2024年
This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer modeling techniques. Clusters undergo deformation as a result of the slowing down;they may also become epitaxial with the substrate and maintain their core-shell structure. A detailed analysis of the effects of the cluster-surface interaction is conducted over a realistic size and energy range, and a model is created to show how clusters accumulate. It is discovered that both the silver shells and the cobalt cluster cores exhibit limited epitaxy with the substrate, and that the contact produced is only a few atomic layers thick. The effect is higher for Ag shells than for Co cores, and it is not very energy dependent.
Akbarali RasulovNodirbek IbrokhimovJaxongir KhodjimatovAzamatjon Tukhtasinov
关键词:CLUSTERLOW-ENERGY
Molecular Dynamics Numerical Simulation of Adsorption Characteristics and Exploitation Limits in Shale Oil Microscopic Pore Spaces
2024年
Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties.Therefore,studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil.In this study,molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures,and the influence of pore size and shale oil hydrocarbon composition on the adsorption properties in the pores was analyzed.The results show that different molecules have different adsorption capacities in shale oil pores,with lighter hydrocarbon components(C6H14)exhibiting stronger adsorption abilities.For the same adsorbed molecule,the adsorption amount linearly increases with the increase in pore diameter,but larger pores contribute more to shale oil adsorption.In shale pores,the thickness of the adsorption layer formed by shale oil molecules ranges from 0.4 to 0.5 nm,which is similar to the width of alkane molecules.Shale oil in the adsorbed state that is difficult to be exploited is mainly concentrated in the first adsorption layer.Among them,the volume fraction of adsorbed shale oil in 6 nm shale pores is 40.8%,while the volume fraction of shale oil that is difficult to be exploited is 16.2%.
Guochen Xu
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
2024年
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
朱万松郑镇法郑奇靖赵瑾
Insight of Natural Compounds Halimane Diterpenoids against Mycobacterium tuberculosis: Virtual Screening, DFT, Drug-Likeness, and Molecular Dynamics Approach
2024年
In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier.
Laurent Gael Eyia AndigaBoris Davy BekonoDésiré Mama BikelePie Pascal Onguéné AmoaLuc Calvin Owono OwonoLuc Léonard Mbaze Meva’a
Molecular Dynamics, Physical Properties, Diffusion Coefficients and Activation Energy of the Lithium Oxide (Li-O) and Sodium Oxide (Na-O) Electrolyte (Cathode)
2024年
This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.
Alain Second Dzabana HongueletAbel Dominique EboungabekaTimothée Nsongo
关键词:CATHODE
Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li<sup>+</sup>), Sodium (Na and Na<sup>+</sup>) and Potassium (K and K<sup>+</sup>)
2024年
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship DLi > DNa > Dk for the multiplicity 6*6*6, while for the activation energy the order is reversed.
Alain Second Dzabana HongueletTimothée NsongoBitho RodongoEarvin Loumbandzila
关键词:LITHIUM
Transient Response and Ionic Dynamics in Organic Electrochemical Transistors
2024年
The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.
Chao ZhaoJintao YangWei Ma
Semiclassical approach to spin dynamics of a ferromagnetic S = 1 chain
2024年
Motivated by recent experimental progress on the quasi-one-dimensional quantum magnet Ni Nb2O6, we study the spin dynamics of an S = 1 ferromagnetic Heisenberg chain with single-ion anisotropy by using a semiclassical molecular dynamics approach. This system undergoes a quantum phase transition from a ferromagnetic to a paramagnetic state under a transverse magnetic field, and the magnetic response reflecting this transition is well described by our semiclassical method.We show that at low temperature the transverse component of the dynamical structure factor depicts clearly the magnon dispersion, and the longitudinal component exhibits two continua associated with single-and two-magnon excitations,respectively. These spin excitation spectra show interesting temperature dependence as effects of magnon interactions. Our findings shed light on the experimental detection of spin excitations in a large class of quasi-one-dimensional magnets.
李承晨崔祎于伟强俞榕

相关作者

韩士杰
作品数:241被引量:3,913H指数:35
供职机构:中国科学院沈阳应用生态研究所
研究主题:长白山阔叶红松林 阔叶红松林 CO CO2通量 凋落物
史强
作品数:25被引量:12H指数:2
供职机构:中国科学院化学研究所
研究主题:电荷转移 分子聚集体 自组装 密度泛函理论 电荷转移过程
杨玉盛
作品数:529被引量:7,064H指数:48
供职机构:福建师范大学
研究主题:杉木 杉木人工林 土壤呼吸 人工林 亚热带
邹春静
作品数:76被引量:1,191H指数:20
供职机构:华东师范大学生命科学学院
研究主题:沙地云杉 生态型 过渡带 长白松 CO2浓度升高
陆建德
作品数:229被引量:642H指数:13
供职机构:中国社会科学院文学研究所
研究主题:P2P VPN PKI IPSEC IPSEC_VPN