The direct replication of W/Si supermirrors is investigated systematically. W/Si supermirrors are fabricated by direct current (DC) magnetron sputtering technology. After deposition, the supermirrors are replicated from the supersmooth mandrels onto ordinary float glass substrates by epoxy replication technique. The properties of the supermirrors before and after the replication are characterized by grazing incidence X-ray reflectometry (GIXR) measurement and atomic force microscope (AFM). The results show that before and after replication, the multilayer structures are almost the same and that the surface roughness is 0.240 and 0.217 nm, respectively, which are close to that of the mandrel. It is demonstrated that the W/Si suDermirrors are successfully replicated from the mandrel with good performance.
The Low Energy X-ray Telescope is one of the main payloads on the Hard X-ray Modulation Telescope satellite. Swept charge devices (SCDs) are selected as detectors for the Low Energy X-ray Telescope. As SCDs are sensitive to proton irradiation, irradiation tests were carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was 3×10^8protons/cm2 over two hours. By comparing the performance before and after irradiation, it is concluded that proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD. The energy resolution of the proton-irradiated SCD is 212 eV@5.9 keV at -60℃, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD in orbit.
A readout system for X-ray CCDs based on an improved architecture is presented; by optimizing several critical circuit blocks along the analog signal chain, the conflict between the readout speed and readout noise is greatly alleviated. Using CCD47-10 as its target CCD, the readout system has achieved 8.6e^- readout noise and 142 eV FWHM at 5.9 keV Mn Kα under a pixel rate of 80 kHz. Also its performance of imaging has been investigated.
Readout noise is a critical parameter for characterizing the performance of charge-coupled devices(CCDs), which can be greatly reduced by the correlated double sampling(CDS) circuit. However, a conventional CDS circuit inevitably introduces new noise since it consists of several active analog components such as operational amplifiers. This paper proposes a digital CDS circuit technique, which transforms the pre-amplified CCD signal into a train of digital presentations by a high-speed data acquisition card directly without the noisy CDS circuit,then implements the digital CDS algorithm through a numerical method. A readout noise of 3.3 e- and an energy resolution of 121 e V@5.9 ke V can be achieved via the digital CDS technique.