The optical properties of a five-level atomic system composed of a A-type four-level atomic and a tripod four-level atomic systems are investigated. It is found that the behaviors of electromagnetically induced transparency (EIT) and group velocity can be controlled by choosing appropriate parameters with the interacting dark resonances. In particular, when all the fields are on resonance, the slow light at the symmetric transparency windows with a much broader EIT width is obtained by tuning the intensity of the coupling field in comparison with its sub-system, which provides potential applications in quantum storage and retrieval of light,
Entanglement dynamics of two non-interacting atoms in a squeezed vacuum reservoir is studied. Several examples with different initial entangled states ave investigated, and it is found that entangled atoms become disentangled faster in squeezed vacuum than in ordinary vacuum, and larger squeezing results in faster entanglement decay. The time evolution of the concurrence and the separability “distance” Λ can be used to explain this novel entanglement sudden death phenomenon.
A Fourier analysis method is used to accurately determine not only the absolute phase but also the tempuralpulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It pavas the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.
The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances, the giantenhanced Kerr nonlinearity can be achieved within the right transparency window. The influence of Doppler broadening is also discussed.
The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2πultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.
Property of the phase of the reemitted field in the semiconductor quantum wells (QWs) excited by fem-tosecond pulse train is investigated. It is shown that the phase evolution of the reemitted field is controlled by the relative phase between the successive pulses of the incident train. For all the odd pulses excitation, the reemitted field is from out-of-phase to in-phase, then again to out-of-phase with the incident pulses, whereas for all the even pulses excitation, the situation is the opposite, i.e., it is from in-phase to out-of-phase, then again to in-phase with the incident pulses.