The dynamical behaviours of valley current controlled buck converter are studied by establishing its corresponding discrete iterative map model in this paper. Time-domain waveforms and phase portraits of valley current controlled buck converter are obtained by Runge-Kutta algorithm through a piecewise smooth switching model. The research results indicate that the valley current controlled buck converter exhibits rich nonlinear phenomena, and it has routes to chaos through period-doubling bifurcation and border-collision bifurcation in a wide parameter range. Interesting inverse nonlinear behaviours compared with peak current controlled buck converter are observed in the valley current controlled buck converter. Analysis and simulation results are verified by experimental results.
This paper presents a new smooth memristor oscillator, which is derived from Chua's oscillator by replacing Chua's diode with a flux-controlled memristor and a negative conductance. Novel parameters and initial conditions are dependent upon dynamical behaviours such as transient chaos and stable chaos with an intermittence period and are found in the smooth memristor oscillator. By using dynamical analysis approaches including time series, phase portraits and bifurcation diagrams, the dynamical behaviours of the proposed memristor oscillator are effectively investigated in this paper.
The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.
A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters on the bifurcation behaviors of V^2C control and current-mode control boost converters were analyzed. The phase portraits and time-domain waveforms of the V^2C control boost converter were obtained by Runge-Kutta algorithm through piecewise smooth switching model. The research results indicate that V^2C control boost converters can evolve into periodic and chaotic behaviors, and show weaker nonlinear behaviors than current-mode control boost converters.
To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.
Based on the framework of Colpitts oscillator, a four-dimensional multi-scroll hyperchaotic system is proposed, which generates (2M+1)×(2N+1)-scroll chaotic and hyperchaotic attractors. The key strategy is to increase the number of index-2 equilibrium points by introducing two unit saw-tooth functions to extend and modify the Colpitts oscillator model. By using bifurcation diagram and phase portrait, the dynamical characteristics of the multi-scroll hyperchaotic system are briefly studied. Moreover, micro-controller based circuit realization is introduced and the experimental results dem-onstrate that 7×5-scroll chaotic and hyperchaotic attractors can be obtained in the digital circuit.
Based on Chua’s chaotic oscillation circuit, a fifth-order chaotic circuit with two memristors is designed and its corresponding dimensionless mathematic model is established. By using conventional dynamical analysis methods, stability analysis of the equilibrium set of the circuit is performed, the distribution of stable and unstable regions corresponding to the memristor initial states is achieved, and the complex dynamical behaviors of the circuit depending on the circuit parameters and the memristor initial states are investigated. The theoretical analysis and numerical simulation results demonstrate that the proposed chaotic circuit with two memristors has an equilibrium set located on the plane constituted by the inner state variables of two memristors. The stability of the equilibrium set depends on both the circuit parameters and the initial states of the two memristors. Rich nonlinear dynamical phenomena, such as state transitions, transient hyperchaos and so on, are expected.
BAO BoChengSHI GuoDongXU JianPingLIU ZhongPAN SaiHu
In this paper, a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented. The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor. The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits, bifurcation diagrams and Lyapunov exponents. Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.