The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold,the heat convection between the casting and the mold,and the heat conduction inside the casting and from the casting to the mold. In this paper,a formula of time step in simulation of solidification is derived,considering the heat radiation,convection and conduction based on the conservation of energy. The different heat transfer conditions between the conventional sand casting and the permanent mold casting are taken into account in this formula. The characteristics of heat transfer in the interior and surface of the casting are also considered. The numerical experiments show that this formula can avoid computational dispersion,and improve the computational efficiency by about 20% in the simulation of solidification process.
Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to describe the mold filling process and predict the air entrapment defect. The model is based on the combination of SOLA and Level Set Method. The pressure and velocity fields are calculated by SOLA,and the interface movement is simulated by Level Set method as the most common interface tracking method in recent years.In order to validate the feasibility of the model,the liquid-gas two-phase simulation results were tested by the broken dam problem and the S-shaped experiment. Comparison between the experiments and simulation results show that Level Set method might be a very promising tool in two-phase flow simulation during the mold filling process.
HAO Jing, CHEN Li-liang, ZHOU Jian-xin, LIAO Dun-ming (State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.