There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applications demanding the rapid and precise transmission of diverse information from one point to another within a short timeframe. The ability to report a signal without tuning within the input bandwidth stands out as one of the advantages of employing a digital wideband receiver. As indicated, a digital wideband receiver plays a pivotal role in achieving high precision and accuracy. The primary distinction between Analog and Digital Instantaneous Frequency Measurement lies in the fact that analog Instantaneous Frequency Measurement (IFM) receivers have traditionally covered extensive input bandwidths, reporting one accurate frequency per short pulse. In the contemporary landscape, digital IFM systems utilize high-sampling-rate Analog-to-Digital Converters (ADC) along with Hilbert transforms to generate two output channels featuring a 90-degree phase shift. This paper explores the improvement of sensitivity in current digital IFM receivers. The optimization efforts target the Hilbert transform and autocorrelations architectures, aiming to refine the system’s ability to report fine frequencies within a noisy wide bandwidth environment, thereby elevating its overall sensitivity.
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
Kai-lun TianKai-li JiangSen CaoJian GaoYing XiongBin TangXu-ying ZhangYan-fei Li
The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.
LI JingLIU KaiWEI ZhengrongZHANG LianchengLIU YangtingPEI YanliangLIU ChenguangLIU Baohua
Data centers,the engines of the global Internet,rely on powerful high-speed optical interconnects.In optical fiber communication,classic direct detection captures only the intensity of the optical field,while the coherent detection counterpart utilizes both phase and polarization diversities at the expense of requiring a narrow-linewidth and high-stability local oscillator(LO).Herein,we propose and demonstrate a four-dimensional Jones-space optical field recovery(4-D JSFR)scheme without an LO.The polarization-diverse full-field receiver structure captures information encoded in the intensity and phase of both polarizations,which can be subsequently extracted digitally.To our knowledge,our proposed receiver achieves the highest electrical spectral efficiency among existing direct detection systems and potentially provides similar electrical spectral efficiency as standard intradyne coherent detection systems.The fully recovered optical field extends the transmission distance beyond the limitations imposed by fiber chromatic dispersion.Moreover,the LO-free advantage makes 4-D JSFR suitable for photonic integration,offering a spectrally efficient and cost-effective solution for massively parallel data center interconnects.Our results may contribute to the ongoing developments in the theory of optical field recovery and the potential design considerations for future high-speed optical transceivers.
We collected high-quality teleseismic events recorded by 12 broadband seismographs deployed in the Anyuan Coal Mine and its adjacent areas in Pingxiang City,Jiangxi Province for nearly two years.The H-κ-c stacking method was employed to obtain the crustal thickness and Poisson's ratio distribution,then the characteristics of crustal structure below the stations were obtained by using the time-domain linear inversion method.The crustal thickness in the Anyuan Coal Mine and its adjacent areas ranges from approximately 32~35 km,with an average thickness of 33 km,which is consistent with the crustal thickness results in South China from previous studies using the receiver function method.The average Poisson's ratio of the crustal bulk composition in the study area varies between 0.22 and 0.25,which is lower than the global value with a 0.27 average,indicating a predominantly intermediate-acidic or felsic crustal composition.There is a weak negative correlation between Poisson's ratio and crustal thickness estimates in the Anyuan Coal Mine and its adjacent areas,suggesting that the absence of mafic-ultramafic materials in the lower crust is associated with the process of crustal delamination.The velocity inversion results indicate that the crustal structure including three velocity discontinuity interfaces,with the first at a depth of approximately 1.5 km,the second at about 10~15 km,and the third being the Moho.The study also indicates that the results obtained by the H-κ-c stacking method are significantly better than those obtained by the H-κmethod,effectively reducing the standard deviation and dispersion of crustal thickness and vP/vSratio.
Xingmian ZhangMeng GongJian LüHongxing LiJie HuJunwen HeJianhua PengBingyue Liu
Using data from the regional broadband dense temporary array deployed by the ChinArray project,we applied the three-dimensional(3D)Kirchhoff migration method of the teleseismic P-wave receiver function to investigate discontinuity structures of the mantle transition zone(MTZ)in the central and western parts of the North China Craton(NCC)using a highresolution 3D velocity model of the East Asian region.The results show that the 410-km discontinuity beneath the Datong Volcano is depressed by~10 km,indicating the presence of a high-temperature anomaly near the depth of 410 km,which is likely related to small-scale mantle upwelling caused by the dehydration of the stagnant Pacific Plate in the MTZ.The upwelling of hot material provides a heat source for surface magmatic activity.Beneath the Bohai Bay Basin,significant subsidence of the 660-km discontinuity is observed,and the transition zone here is extensively thickened.It’s suggested that the anomalies in this region are related to the stagnation of the Pacific slab in the MTZ.Although the thickness of the transition zone west of the North-South Gravity Lineament appears normal,we propose that the subducting front of the Pacific slab did not cross the gravity lineament in the NCC.In comparison,the small-scale subsidence of the 660-km discontinuity and the thickening of the MTZ observed north of the Hannuoba Volcano likely indicate that the slab crossed the gravity lineament at its turning point and remained in the MTZ.Furthermore,a local thickening of the MTZ is observed in the Dabie orogenic belt of the Qinling Mountains.This is believed to be a combined effect of lithospheric delamination into the transition zone in the lower Yangtze region and the stagnation of the Pacific Plate.