罗琛
- 作品数:3 被引量:16H指数:3
- 供职机构:北京师范大学更多>>
- 发文基金:国家自然科学基金湖北省自然科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术电子电信更多>>
- 半自主在线学习目标检测系统被引量:3
- 2016年
- 针对不同监控场景,不同成像条件下目标姿态变化较大的问题,提出一种具有半自主学习能力的目标检测系统。该系统能在执行检测任务的同时,通过快速的半自主学习提高检测性能。系统包括了目标检测模块及在线学习模块。为满足系统在线学习需求,提出随机蕨分类器的在线学习方法,使目标检测模块可持续自我更新,提高检测性能。通过半自主在线学习框架使整个学习过程不需准备初始训练样本集,只需框选一个待检测目标即可进行自适应学习,逐渐提高检测性能。实验表明,该方法在多种监控场景中均有较强的自适应能力和较好的目标检测效果。
- 罗琛韩家宝罗大鹏
- 关键词:目标检测
- 基于在线随机蕨分类器的实时视觉感知系统被引量:5
- 2016年
- 本文针对不同成像条件下,目标姿态变化对系统检测性能的影响,提出一种具有自主学习能力的视觉感知系统.该系统能在执行检测任务的同时,通过快速的自主学习提高检测性能,并保持实时目标检测速度.系统包括了目标检测模块及在线学习样本自动获取、标注模块.针对目标检测模块为满足系统自主学习需求,提出随机蕨分类器的在线学习方法,使目标检测模块可持续自我更新,提高检测性能;针对样本自动获取、标注模块则提出最近邻分类器辅助的双层级联标注方法.此外,本文提出自主在线学习框架,整个学习过程不用准备初始训练样本集,通过人工选定一个待检测目标即可进行无需干预的自适应学习,逐渐提高检测性能.实验表明,该方法在多种监控场景中均有较强的自适应能力和较好的目标检测效果.
- 罗大鹏罗琛魏龙生韩家宝王勇马丽
- 关键词:视觉感知目标检测
- 基于少量样本学习的多目标检测跟踪方法被引量:8
- 2021年
- 视频目标检测跟踪算法一直是计算机视觉领域的研究热点,目前大部分方法均需人工采集样本训练检测模型,搭建目标检测跟踪系统.当目标成像条件发生变化时,需重新采集样本,训练模型,调试整个检测跟踪系统,耗费大量人力、物力.本文提出一种基于少量样本学习的多目标检测跟踪算法,只需在监控视频第一帧指定待检测目标,即可自主生成混合分类模型,进行目标检测.采用在线渐进学习算法学习目标姿态变化,更新该模型.结合基于颜色的目标跟踪算法,自动构建高精度目标检测跟踪系统.整个过程无需手工采集、标注训练样本.因此,易于扩展到其它监控场景,通过自主学习形成该场景专用的检测跟踪系统,实现不同监控环境下,不同成像条件下都有较好的检测跟踪效果.实验表明,本方法能自主学习多种监控场景下的目标姿态,无需手工标注训练样本,在基于在线学习的算法中有最佳的检测精度,此外也取得了和离线目标检测跟踪系统相似的性能.
- 罗大鹏杜国庆曾志鹏魏龙生高常鑫陈应肖菲罗琛
- 关键词:多目标检测多目标跟踪