ISDN(Integrated Services Digital Network)是较为普及的数字化网络,而随着IP互联网的推广,VoIP网络开始成为通信网络中的重要力量,语音网关可以实现这两个网络的连接。通过分析ISDN和SIP协议的信令特点和呼叫时序,针对不同的语音呼叫场景,分别给出了语音网关内部的时序和信令转换的实现方法。
云计算环境下,需要对云数据特征进行深度融合,提高对云数据的调度和决策能力。传统的云数据融合算法采用置信增益概率分配算法,当云数据出现多重特征时,融合深度不够,信息提取效果不好。提出一种基于贝叶斯粗糙集的云数据深度融合算法。引入了置信增益函数贝叶斯粗糙集,得到贝叶斯粗糙集云数据模型构建,在特征空间关系中进行特征合并,进行决策表决策属性分区处理,提高融合精度,依据信任函数最大化原则确定新对象的决策属性取值,实现云数据深度融合算法改进。仿真实验表明,采用该算法,能有效提高数据融合深度和精度,稳健性较好,可以明显的抑制噪声的影响,并提高20 d B左右的特征空间增益,算法在高维空间中仍体现出了较为明显的数据融合优势,该算法在云计算和云数据信息处理等领域具有较好应用前景。