[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and flow rate were optimized to determine the optimal separation condition, under which the scale-up process was verified. [Result] The optimal condition for separation of phycoerythrin by using Q Sepharose FF resin was investigated: 30 ml of laver extract was loaded to the Q Sepharose FF column with a bed volume of 8 ml; subsequently, the column was stepwise eluted with 0-0.10-0.35-1.00 mol/L NaCI solution (pH 6.0) at a constant flow rate of 1 ml/min; the elution peak under 0.35 mol/L NaCI solution was collected, and the recovery rate and purity coefficient (A565/A280) of phycoerythrin were determined as 44.3 and 1.15, respectively. Based on the established process, 75 ml of phycoerythrin extract was loaded to the Q Sepharose FF column with a bed volume of 20 ml for separation, while no significant variation was observed in the separation result. [Conclusion] Phycoerythrin can be well separated from laver extract by using Q Sepharose FF resin and the process is feasible for scale-up.