刘天玲
- 作品数:2 被引量:21H指数:2
- 供职机构:中国农业大学理学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:理学机械工程更多>>
- 基于NIR分析和模式识别技术的玉米种子识别系统被引量:7
- 2012年
- 模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。文章基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-norm SVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM,PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。
- 刘天玲苏琪雅孙群杨丽明
- 关键词:近红外光谱局部线性嵌入小波变换偏最小二乘
- 基于NIR分析和模式识别技术的玉米种子识别系统被引量:14
- 2012年
- 模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-normSVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM和PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。
- 刘天玲苏琪雅孙群杨丽明
- 关键词:近红外光谱局部线性嵌入小波变换偏最小二乘