钱鹏
- 作品数:4 被引量:16H指数:2
- 供职机构:解放军理工大学通信工程学院更多>>
- 发文基金:国家自然科学基金江苏省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 无线传感器网络中基于压缩感知的动态目标定位算法被引量:9
- 2016年
- 传统的动态目标定位算法需要采集、存储和处理大量数据,并不适用于能量受限的无线传感器网络。针对该缺陷,该文提出一种基于压缩感知的动态目标定位算法。该算法利用目标的运动规律设计稀疏表示基,从而将动态目标定位问题转化为稀疏信号恢复问题。针对传统观测矩阵难以实现的缺陷,该算法设计可实现且与稀疏表示基相关性低的稀疏观测矩阵,从而保证了算法的重构性能。该算法的特点是可利用较少的数据采集实现动态目标定位,从而大大延长无线传感器网络的寿命。仿真结果表明,该文所提出的基于压缩感知的动态目标定位算法具有较好的定位性能。
- 孙保明郭艳李宁钱鹏
- 关键词:无线传感器网络压缩感知
- 基于数据融合的压缩感知多目标定位算法被引量:2
- 2018年
- 文中提出一种基于数据融合的压缩感知多目标定位算法,该算法能够同时处理多种不同类型的定位数据。与传统算法相比,该算法以目标个数的稀疏性为基础,通过压缩感知技术来重构目标位置向量,从而大大减少了传感器的数目。算法分为数据预处理和数据融合定位两个阶段。在数据预处理阶段,将不同类型的数据转换到同一个数量级,使得各类型数据能被充分用于提高目标定位性能;在数据融合定位阶段,提出一种基于多测量向量的压缩感知重构算法来估计目标位置向量。仿真证明,相比于现有的压缩感知定位算法,所提算法具有更高的定位精度和更强的鲁棒性。
- 杨思星郭艳李宁孙保明钱鹏
- 关键词:压缩感知数据融合无线传感器网络
- 基于压缩感知的多目标定位中的测量矩阵设计被引量:3
- 2016年
- 根据传感器网络中定位问题天然的稀疏性,研究了基于压缩感知理论的多目标定位方法。首先将目标位置信息表示成一个稀疏向量,将定位问题转化为向量估计问题。通过部署少量传感器测量接收信号的强度值,求解一个1范数最优化问题便可精确地重构出位置向量。相对于当前压缩感知定位中常用的稀疏随机测量矩阵,提出了一种改进的测量矩阵设计方法,指示传感器节点进行有规律、均匀的部署。仿真结果表明,相较于传统随机测量矩阵,改进测量矩阵在定位精确度和稳定性上都体现了巨大优势。
- 郭艳钱鹏李宁孙保明
- 关键词:压缩感知传感器网络
- 基于压缩感知的多目标定位与功率估计被引量:2
- 2016年
- 因传感器网络中定位问题具有的天然稀疏性,压缩感知理论被广泛应用于其中以减少数据采样量。然而,现有的基于压缩感知的定位技术往往需要目标的发射功率作为先验条件,这并不符合实际中目标完全未知的情况。基于此,提出了一种多目标定位和发射功率估计的方法,该方法将目标位置和功率信息建模成一个稀疏向量,从而将定位和功率估计问题转化为稀疏向量估计问题。该方法包括离线和在线两个阶段:离线阶段主要是部署一些射频发射器并测量接收信号强度值,从而构建感知矩阵;在线阶段中,通过部署少量传感器测量接收信号强度值,求解一个1范数最优化问题便可精确地重构出稀疏向量。仿真结果验证了该多目标定位和功率估计方法的有效性和鲁棒性。
- 钱鹏郭艳李宁孙保明
- 关键词:压缩感知传感器网络