针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用到传统TGV中,对图像的不同区域进行不同强度的去噪,从而达到保护图像细节的效果。该算法首先采用滤波反投影(FBP)算法得到低剂量CT重建图像;然后利用基于直觉模糊熵的边缘指示函数对传统TGV模型进行改进;最后用改进后的模型对重建图像进行降噪处理。采用Shepp-Logan模型和数字胸腔模型(thorax phantom)仿真低剂量CT重建图像来验证算法的有效性。实验结果表明,所提算法的归一化均方距离(NMSD)和归一化平均绝对距离(NAAD)均比总变分(TV)降噪算法和广义总变分(TGV)降噪算法小,且可分别获得26.90 d B和44.58 d B的峰值信噪比(PSNR)。该算法在去除条形伪影的同时可以较好地保持图像的边缘和细节信息。
为解决低剂量计算机断层扫描(computedtomography,CT)重建图像时产生严重退化的问题,提出一种改进的非局部均值低剂量CT统计迭代重建算法。采用高斯滤波函数对含噪图像进行滤波,利用改进的非局部均值(non-local means,NLM)降噪模型做进一步降噪处理,通过空间邻近度因子和空间变化的滤波参数改进权值函数,得到新的降噪模型,把该模型应用到惩罚加权最小二乘(penalized weighted least square,PWLS)重建算法中,以期达到噪声抑制和边缘保持的良好效果。实验结果表明,该算法的重建图像可有效去除噪声,保护图像的边缘信息和细小结构。