李紫阳
- 作品数:3 被引量:64H指数:3
- 供职机构:中国矿业大学信息与电气工程学院更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术矿业工程电子电信更多>>
- 一种结合直方图均衡化和MSRCR的图像增强新算法被引量:47
- 2014年
- 为便于集成电路(IC)真实缺陷形貌图的缺陷特征提取,提出了一种结合直方图均衡化(HE)和多尺度Retinex彩色恢复(MSRCR)算法的彩色图像增强新算法.用直方图均衡化对彩色图像进行增强,可以显著提高对比度,但会降低原图的信息熵;用Retinex算法对彩色图像进行增强,可以显著提高暗区域的细节,但会产生泛白、颜色失真和对比度低的现象.新算法根据两种算法处理结果的特点,将图像先分别进行HE增强和MSRCR增强,然后按照一定的图像融合规则进行加权融合,经过大量的测试统计,得到了一个最佳权重.实验证明,改进的算法使图像的亮度、对比度、细节等都有很大的增强,不仅改善了图像的整体视觉效果,而且得到了最大的信息熵,能更好地刻画IC缺陷细节,有利于后续的目标检测和缺陷特征提取,并验证了算法的通用性.
- 李锦王俊平万国挺李紫阳许丹曹洪花张广燕
- 关键词:图像增强直方图均衡化RETINEX算法图像融合
- 深度学习耦合粒子群优化SVM的瓦斯浓度预测被引量:10
- 2016年
- 为改进工作面煤矿瓦斯涌出浓度的预测精度,基于深度学习网络、SVM和粒子群(PSO)优化算法的原理,建立1种深度学习网络与粒子群优化SVM神经网络耦合的混合算法模型,该算法首先基于深度学习理论学习样本数据较深层次的特征,提取出较少个用来表征原始数据的特征量变量,对特征变量建立PSO-SVM预测模型进行瓦斯涌出浓度预测,通过工作面现场采集的数据进行仿真实验,实验结果表明该方法使预测精度较对原始数据直接进行PSO-SVM预测得到较大的提升,同时实现了原始数据的降维,减少了算法的运行时间,提高了算法效率。
- 钱建生邱春荣李紫阳吴响
- 关键词:特征提取粒子群优化瓦斯预测
- 自适应HSV空间Retinex煤矿监控图像增强算法被引量:7
- 2017年
- 针对煤矿井下的监控图像由于粉尘、煤尘、低照度或点光源等光照的影响,而整体阴暗模糊,对比度低,背景噪声强,视觉效果不理想的问题,提出一种改进的HSV(Hue,Saturation,Value)空间的颜色可恢复的多尺度Retinex(Multi-Scale Retinex,MSR)的图像增强算法。该算法先将图像从RGB空间转换到HSV空间,以确保后续图像增强处理不会影响图像的色彩效果;然后利用提出的自适应的高斯核函数分离亮度分量V的照度分量和反射分量,再利用自适应的增益系数对反射分量进行增强处理,获得不受光照影响的、增强的反射图像;最后将反射图像逆变换回RGB空间,再利用优化的颜色恢复函数对增强的图像进行颜色修正,从而改善图像的全局视觉效果和局部对比度。实验表明该方法能有效提高煤矿井下监控图像的对比度和亮度,抑制背景噪声,从而大大改善煤矿井下监控图像的视觉效果,且很好地实现了参数自适应,减少了人为因素对结果的影响。
- 蔡利梅向秀华李紫阳
- 关键词:图像增强HSV色彩空间