在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这一问题,分别从理论和实验上证明了多智能体深度确定性策略梯度方法存在价值函数被高估.提出基于双评论家的多智能体深度确定性策略梯度(multiagent deep deterministic policy gradient method based on double critics,MADDPG-DC)方法,通过在双评论家网络上的最小值操作来避免价值被高估,进一步促进智能体学得最优的策略.此外,延迟行动者网络更新,保证行动者网络策略更新的效率和稳定性,提高策略学习和更新的质量.在多智能体粒子环境和交通信号控制环境上的实验结果证明了所提方法的可行性和优越性.
孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练样本上得到的小误差分类器对独立测试集的测试误差仍然较小.孪生支持向量回归机通过将线性不可分样本映射到高维特征空间,使得映射后的样本在该高维特征空间内线性可分,保证了其具有较好的泛化性能.孪生支持向量回归机的算法思想基于孪生支持向量机(Twin Support Vector Machine,TWSVM),几何意义是使所有样本点尽可能地处于两条回归超平面的上(下)不敏感边界之间,最终的回归结果由两个超平面的回归值取平均得到.孪生支持向量回归机需求解两个规模较小的二次规划问题(Quadratic Programming Problems,QPPs)便可得到两条具有较小拟合误差的回归超平面,训练时间和拟合精度都高于传统的支持向量回归机(Support Vector Regression,SVR),且其QPPs的对偶问题存在全局最优解,避免了容易陷入局部最优的问题,故孪生支持向量回归机已成为机器学习的热门领域之一.但孪生支持向量回归机作为机器学习领域的一个较新的理论,其数学模型与算法思想都尚不成熟,在泛化性能、求解速度、矩阵稀疏性、参数选取、对偶问题等方面仍存在进一步改进的空间.本文首先给出了两种孪生支持向量回归机的数学模型与几何意义,然后将孪生支持向量回归机的几个常见的改进策略归纳如下.(1)加权孪生支持向量回归机由于孪生支持向量回归机中每个训练样本受到的惩罚是相同的,但每个样本对超平面的影响不同,尤其是噪声和离群值会使算法性能降低,并且在不同位置的训练样本应给予不同的处罚更为合理,因此考虑在孪生支持向量回归机的每个QPP中引入一个�