李梦佳
- 作品数:2 被引量:9H指数:2
- 供职机构:北京工业大学软件学院更多>>
- 发文基金:中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于压缩感知的无线传感器网络动态采样方法被引量:4
- 2017年
- 基于固定采样率的无线传感网(WSN)压缩感知(CS)在收集随时间变化的数据时难以获得满意的数据恢复精度。针对该问题,提出了一种基于数据预测和采样率反馈控制的动态采样方法。首先,汇聚节点通过分析当前采样时段与上一采样时段获取数据的线性度量指标,预测数据的变化趋势;然后,根据预测结果计算感知节点未来的采样率,并通过反馈控制机制对感知节点的采样过程进行动态调节。实验结果表明,相比基于目前广泛采用的基于固定采样率的无线传感网压缩感知数据收集方法,该方法能够有效提高压缩数据的恢复精度。
- 宋洋黄志清张严心李梦佳
- 关键词:压缩感知数据预测反馈控制
- 基于StOMP算法的WSN压缩感知数据重构被引量:5
- 2017年
- 分段正交匹配追踪算法(StOMP)运算速度快、计算量小,适用于无线传感器网络(WSN)压缩感知数据重构。为此,分析并研究StOMP算法的门限阈值选取对WSN压缩感知数据重构精度的影响,提出一种StOMP算法门限阈值的自适应调整方法。基于比例-积分-微分方法的思想,根据StOMP算法的当次重构误差计算门限阈值的调整值,并使用调整后的门限阈值重新进行数据重构,重复该过程以提高重构精度。实验结果表明,该方法能快速找到满足误差要求的门限阈值,与采用固定门限阈值的调整方法相比,重构精度更高。
- 黄志清张严心张严心李梦佳
- 关键词:压缩感知数据重构