为了解决YOLO系列目标检测算法存在的精度与计算成本不均衡、模型泛化性不足的问题,提出了可满足不同光照场景下目标检测需求的高精度快速的车辆与行人检测模型YOLO-Day Night and Fast(YOLO-DNF)。文中结合当下主流检测模型所使用的卷积神经网络分析卷积结构与网络深度对于主干网络特征提取能力和计算成本的影响,针对网络不同层次选取卷积结构Arrow-Block与CSP-Block搭建网络并通过量化堆叠单元的计算成本确定网络深度,提出低计算成本、高特征提取能力的ACNet网络。此外分析了白天与夜间图像的亮度差异,引入了HSV域扰动并提出亮度处理的数据增强策略,提升了模型的夜间检测精度,改善了模型泛化性不足的问题。实验结果表明:YOLO-DNF模型在SODA10M数据集仅含白天图像的训练集中训练后以每秒24.36帧的检测速率达到32.8%的全时段mAP检测精度,检测精度与速度超过目前主流检测模型。其中夜间精度达到了27.7%,扩展了模型的检测应用场景。
针对YOLO(you only look once)v5算法在应用于光学遥感图像舰船目标检测任务时所面临的小目标误检率、漏检率较高的情况,提出一种基于YOLOv5改进的光学遥感图像舰船目标检测方法。首先对路径聚合网络结构进行改进,设计语义信息增强模块提取更富语义信息的浅层特征,增强对小目标特征的表达能力;然后使用Swish函数作为激活函数,提高网络对数据非线性特征的表征能力,加快模型的收敛速度;最后针对舰船目标的尺寸特点优化检测端结构,移除大目标检测头以减少推理计算量。测试集上的实验表明,该方法相较改进前将检测精度提高了5.2%且推理时间有所减少,在保证检测实时性的同时增强了模型的小目标辨别能力。