王帆
- 作品数:6 被引量:29H指数:3
- 供职机构:华东理工大学化工过程先进控制和优化技术教育部重点实验室更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于ReliefF的主元挑选算法在过程监控中的应用被引量:5
- 2017年
- 传统的主成分分析(principal component analysis,PCA)算法选取包含大部分方差信息的成分作为主元,并将其应用到过程监控中。但是故障信息不一定会投影到方差较大的成分上,使用方差贡献度挑选主元会导致严重的信息丢失和监控效果的恶化。因此使用ReliefF-PCA算法,其中ReliefF算法从故障角度出发,挑选出在区分正常样本和故障样本上权重更高,效果相对更好的成分作为主元。这样挑选出的主元避免了传统PCA算法在主元挑选过程中出现的主观性、盲目性以及重要信息的丢失。ReliefF-PCA算法在过程监控中主要有两个优势,第1,监控效果更好;第2,对原始数据降维效果更好。随后,基于ReliefF-PCA算法,提出一种加权的故障变量贡献图方法。最后,通过Tennessee Eastman(TE)仿真实验测试,ReliefF-PCA算法达到了预期效果。
- 陶阳王帆侍洪波宋冰
- 关键词:主元分析故障定位
- 基于稀疏性非负矩阵分解的故障监测方法被引量:12
- 2015年
- 提出了基于稀疏性非负矩阵分解(SNMF)的故障监测方法。非负矩阵分解(NMF)是一种新的降维方法,可以得到原始数据的低秩近似矩阵。与传统的多元统计过程监控方法如主成分分析(PCA)相比,NMF对潜变量的性质没有假设,除了非负性的要求。将稀疏编码和非负矩阵分解方法结合在一起,因为施加了稀疏性的约束,稀疏性非负矩阵分解方法可以得到对数据更稀疏的表示。在分解时对低秩近似矩阵进行正交化处理,从而在降维时除去变量中的冗余信息,将信息集中到更少的投影方向上。然后,用SNMF方法来提取过程的潜变量,并定义新的监测指标来进行故障监测。使用核密度估计(KDE)方法来计算新定义的监测指标的控制上限。最后,将提出的基于SNMF的监测方法应用于TE过程来评估其监测性能,并与基于传统NMF和PCA的方法进行比较。仿真实验结果表明了所提出新方法的可行性。
- 王帆杨雅伟谭帅侍洪波
- 关键词:故障监测非负矩阵分解主元分析统计过程监控
- 基于非负矩阵分解的多模态过程故障监测方法被引量:3
- 2016年
- 针对传统的多元统计故障监测方法往往需要假设测量数据服从单一高斯分布的不足,提出了一种基于非负矩阵分解(NMF)的多模态故障监测方法。首先使用标准的NMF算法对训练集数据进行聚类,将多模态数据划分到各个模态中;然后使用稀疏性正交非负矩阵分解(SONMF)算法对各模态分别建模,同时构造监控统计量进行故障监测。将提出的基于非负矩阵分解的多模态故障监测方法应用于数值例子和TE过程的仿真结果表明,该方法能够及时有效地检测出多模态过程中的故障。
- 朱红林王帆侍洪波谭帅
- 关键词:故障监测非负矩阵分解
- 基于LPP-GNMF算法的化工过程故障监测方法被引量:2
- 2016年
- 提出了基于LPP-GNMF算法的化工过程故障监测方法。非负矩阵分解(NMF)是一种新兴的降维算法,由于它在机理上具有潜变量的正向纯加性的特点,所以在对数据进行压缩时,可以基于数据内部的局部特征有效描述数据信息,相比于传统的多元统计过程监控方法如主元分析(PCA)等有更好的解释能力。然而NMF要求原始数据满足非负性的要求,实际的化工过程有时并不能保证,为放宽对原始数据的非负要求,引入了广义非负矩阵分解(GNMF)算法。其次,GNMF在分解的过程中没有考虑到样本间的局部结构和几何性质,可能存在不能准确处理数据的问题。针对这一问题,提出了将GNMF与LPP(局部投影保留)相结合的算法。将提出的LPP-GNMF算法应用于TE过程来评估其监测性能,并与PCA算法、NMF算法、SNMF算法进行比较,仿真模拟结果表明所提算法的可行性。
- 朱红林王帆侍洪波谭帅
- 关键词:故障监测主元分析
- 基于关键变量的OPLS预测方法被引量:7
- 2016年
- 产品的最终质量主要是由生产过程中的关键变量决定的,因此,回归模型的质量预测能力与过程变量的选择密切相关。本文提出了一种新的基于关键变量(CV)的OPLS预测方法(CVOPLS),用于输出变量较多过程的质量预测。首先,根据关键变量选取准则,为每个质量变量选取建模所需的关键过程变量。为了减少最后需要建立的模型个数,将由质量变量及其相应的关键过程变量组成的数据阵进行重组,并用OSC算法去除重组后的数据阵中与质量变量无关的干扰信息。然后,对校正后的数据阵建立PLS模型,求取相应的模型回归系数,得到最终的质量预测结果。与传统的PLS及OPLS方法相比,该方法能够在保证模型较好预测精度的前提下,有效地简化模型结构。最后,通过Tennessee Eastman(TE)过程的实验仿真验证了CV-OPLS方法的有效性。
- 罗明英王帆谭帅侍洪波
- 基于变量概率信息的因子分析监控方法被引量:2
- 2017年
- 因子分析(factor analysis,FA)将噪声因素加入到建模过程中,可通过最大期望(expectation maximum,EM)算法建立模型。传统的FA(ST)指标仅利用了变量的期望信息而忽略了更能代表不确定性的方差信息,这可能会导致故障的漏报。通过对过程变量的概率分析,从本质上揭示了FA(ST)的这一缺陷。建模过程中的另一个重要因素是确定因子个数,使得在降维的同时能最大程度地保留对过程有用的信息。针对传统监控指标信息不足的问题,提出的负对数似然概率(negative log likelihood probability,NLLP)指标整合了更全面的概率信息;针对因子个数给定的问题,提出了一种整体-局部因子数确定法,使得因子和变量对于过程的信息解释率都达到收敛。最后通过数值例子和Tennessee Eastman(TE)过程验证了所提方法的有效性和优越性。
- 胡婷婷王帆侍洪波
- 关键词:参数估计过程控制统计分析