罗路
- 作品数:7 被引量:20H指数:3
- 供职机构:福建农林大学材料工程学院更多>>
- 发文基金:国家自然科学基金福建省自然科学基金更多>>
- 相关领域:化学工程理学机械工程更多>>
- 单宁改性酚醛基炭气凝胶的制备及其CO_(2)吸附性能被引量:3
- 2023年
- 基于绿色低成本的单宁所具有的大量反应性羟基,其与醛类反应具有与苯酚或间苯二酚相似的机制。在传统的酚醛树脂基(苯酚-尿素-甲醛)炭气凝胶的基础上,通过添加单宁进行改性,成功制备出新型高效的CO_(2)吸附用酚醛基炭气凝胶。通过扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和氮气吸脱附测试对其表面化学和孔隙结构进行了系统表征,同时通过CO_(2)吸脱附测试对其CO_(2)吸附量、选择性吸附及吸附热等进行了研究。结果表明:以绿色可再生的生物质原料单宁对原料进行部分取代,不仅可以显著降低产品成本,还可以明显改善其CO_(2)的吸附性能。当单宁的添加量(15 g)为苯酚用量的50wt%时,样品具有最大的比表面积(1376.31 m^(2)·g^(−1))和微孔体积(0.55 cm^(3)·g^(−1)),是一种极具潜力的气体吸附材料。其相应的CO_(2)吸附量高达5.36 mmol·g^(−1),选择性吸附和吸附热则分别为16.84和34.49 kJ·mol^(−1),性能较未改性的酚醛基炭气凝胶显著改善,同时也优于大部分传统的炭气凝胶材料,这主要归因于其具有较高的比表面积、微孔体积、适宜的孔径分布和良好的三维网络结构。
- 周亚兰罗路范毜仔杜官本赵伟刚
- 关键词:酚醛树脂炭气凝胶二氧化碳
- 酚醛基炭气凝胶的研究进展被引量:1
- 2022年
- 炭气凝胶是一种多孔纳米炭材料,具有低密度、高孔隙率、高比表面积、优异的导电性和良好的成型性能等优点,是炭材料研究的热点和重要方向。本文旨在通过阐明酚醛基炭气凝胶的制备原料和制备工艺的发展过程,从而突出未来酚醛基炭气凝胶的发展方向。基于此,本文首先重点介绍了酚醛基炭气凝胶的制备方法,主要包括溶胶-凝胶化、干燥以及炭化过程三个最主要的步骤;进而详述了以三种不同的前体,即间苯二酚、苯酚、生物质单宁/木质素分别制备酚醛基炭气凝胶的方法及其优缺点;接下来对酚醛基炭气凝胶作为吸附材料(气体吸附/液体吸附)的吸附量以及在电化学储能以及其他领域的应用进行了综述;最后对酚醛基炭气凝胶未来的研究方向和发展前景进行了总结和展望。文章指出,传统的以间苯二酚为原料辅以超临界干燥的方法制备的酚醛基炭气凝胶,原料成本较高,反应条件苛刻,实际生产应用受限;以苯酚取代间苯二酚,亦或是采用冷冻干燥等方法改进其制备工艺,可以大幅度降低原料和生产成本;但未来的发展方向和重点将是绿色、可再生的生物质原料(单宁、木质素、腰果酚等)及复合气凝胶材料的研发。因此,酚醛基炭气凝胶在未来的发展还需要进一步改进其制备工艺和方法,拓宽其原料来源,从而提高性能,扩大应用领域。
- 周亚兰闫雯罗路范毜仔杜官本赵伟刚
- 关键词:酚醛树脂炭气凝胶溶胶-凝胶热解纳米材料
- 杉木树皮基活性炭的制备、表征及其电化学性能研究被引量:2
- 2022年
- 以林业废弃物杉木树皮作原料,通过低温炭化和KOH高温活化两步法制备了具有高表面积和孔隙率的杉木树皮基活性炭并应用于超级电容器电极材料。以碱炭比和活化温度为试验因素,以电流密度0.5 A/g下的质量比电容为响应值,进行中心复合设计(CCD)和响应面分析。研究结果表明:杉木树皮基活性炭的比表面积最高可达1522 m^(2)/g,最大孔容可达0.84 cm^(3)/g,此时平均孔径为1.12 nm,且同时存在大量的中孔和微孔。碱炭比和活化温度的交互作用对比电容的影响显著,响应面法优化得到杉木树皮基活性炭最佳制备工艺为:碱炭比值为3,活化温度605℃,此条件下炭材料的比电容为185.7 F/g。对优化条件下制备的活性炭进行电化学性能测试发现:在0.5 A/g条件下的最大比电容为188 F/g,且具有良好的倍率性能(85.1%)。
- 罗路罗凌聪邓剑平周亚兰范毜仔赵伟刚
- 关键词:响应面活性炭电化学比电容
- 豆壳基炭材料的响应面优化设计及电化学特性被引量:5
- 2021年
- 为了满足人们对新型储能设备的需求,以生物质尤其是农林废弃物基炭材料作为电极材料的超级电容器备受关注。该研究以农业废弃物材料刀豆壳作为前驱体,采用KOH活化方法制备高比面积活性炭并作为超级电容器电极材料。以材料比电容为响应值,活化温度和活化比例为试验因素,采用中心复合设计方法(CCD,Central Composite Design)进行响应面优化研究,并探究在最佳工艺条件下制备的活性炭的电化学性能。研究结果表明:活化温度和活化比例对刀豆壳活性炭材料的比电容均具有显著影响。优化得到的最优工艺参数为活化温度694℃,活化比例4.17∶1。验证试验得到刀豆壳活性炭材料的平均比电容为254 F/g,与预测值基本吻合。同时对活性炭进行了性能表征,采用扫描电镜(SEM,Scanning Electron Microscope)和透射电镜(TEM,Transmission Electron Microscope)观察活性炭的形貌特征,通过氮气吸-脱附测试研究了炭材料的孔隙结构,结果表明:刀豆壳活性炭材料表面分布大量纳米孔,最大比表面积可达3129 m^(2)/g,总孔容达1.68 cm3/g,微孔孔容达0.96 cm^(3)/g,有利于电解液流通和电解质离子吸附。
- 罗路邓剑平罗凌聪陈婷婷范毜仔赵伟刚
- 关键词:比表面积响应面KOH活化
- 高比表面积活性炭吸附储氢材料的研究进展被引量:6
- 2016年
- 能源和环境被认为是本世纪人类面临的两大挑战,从而引起了人们对于"氢经济"的关注,但是氢气的储存是制约"氢经济"发展的最主要的因素。本文简述了不同的储氢方法以及氢能实用化的目标,回顾了以KOH活化制备高比表面积活性炭的的机理和影响因素,并综述和评价了影响高比表面积活性炭吸附储氢的主要影响因素,即比表面积和微孔孔容、孔径大小和分布、表面含氧官能团和杂原子掺杂。到目前还没有一种材料(包括高比表面积活性炭)可以满足美国能源部(DOE)设定储氢系统实用化的目标,对于高比表面积活性炭的孔径控制以及改性研究或许是实现这一目标的途径。
- 赵伟刚罗路王洪艳
- 关键词:氢高比表面积活性炭多孔性表面特性
- 响应面优化设计棕榈壳活性炭的制备及储氢性能研究被引量:2
- 2021年
- 以生物质材料棕榈壳作原料,采用KOH活化方法制备高比面积活性炭,以比表面积和微孔孔容作为考察目标,分别通过单因素试验和响应面法探究不同的制备工艺条件的影响及其最优工艺参数,并考察了最佳工艺条件下制备的活性炭的储氢性能。研究结果表明:活化温度和浸渍比值对比表面积和微孔孔容均具有显著影响,以微孔孔容模型进行预测优化得到的最优工艺参数为活化温度795℃,浸渍比值3.64,制备得到的棕榈壳活性炭的平均比表面积和微孔孔容分别为3491 m^(2)/g和1.08 cm^(3)/g。孔结构分析结果表明:棕榈壳活性炭主要以微孔为主,微孔率最高可到89%,也有中孔并存。从扫描电镜和透射电镜图也可以看出活性炭存在大量微孔和中孔,两者结果一致。同时棕榈壳活性炭的储氢性能优异,在-196℃和4 MPa条件下,其过量储氢量和绝对质量储氢量可分别高达6.4%和6.8%。
- 罗路罗凌聪邓剑平范毜仔杜官本赵伟刚
- 关键词:KOH活化比表面积储氢材料
- 硼/氮共掺杂刀豆壳基多孔炭材料的制备及其电化学性能研究被引量:2
- 2021年
- 以农林废弃物刀豆壳为原料,首先以低温炭化和KOH高温活化两步法制备高比表面积活性炭,进而以四水合五硼酸铵为硼源、氮源通过水热合成反应制备得到硼/氮共掺杂多孔炭材料。通过扫描电镜、透射电镜、氮气吸附-脱附、电感耦合等方法对材料的结构和化学特性进行表征,并采用三电极系统测试其电化学性能。研究结果表明:掺杂后的活性炭材料最大比表面积可达2859 m^(2)/g,总孔容1.34 cm^(3)/g,微孔孔容0.99 cm^(3)/g,最高硼质量分数为3.27%,氮质量分数为2.60%。基于杂原子的引入和适宜的孔隙结构的共同作用,掺杂后的活性炭材料在电流密度1 A/g条件下比电容最高达369 F/g,相应的20 A/g电流密度条件下的质量比电容为240 F/g,倍率性能优异。
- 罗路罗凌聪邓剑平陈婷婷范毜仔杜官本赵伟刚
- 关键词:比表面积