王瑞波
- 作品数:22 被引量:103H指数:7
- 供职机构:山西大学计算机与信息技术学院更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划国家社会科学基金更多>>
- 相关领域:自动化与计算机技术理学更多>>
- 基于条件随机场模型的汉语功能块自动标注被引量:8
- 2010年
- 汉语组块分析是将汉语句子中的词首先组合成基本块,进一步组合形成句子的功能块,最终形成一个具有层次组合结构的汉语句法描述结构.将汉语功能块的自动标注问题看作序列标注任务,并使用词和基本块作为标注单元分别建立标注模型.针对不同的标注模型,分别构建基本块层面的特征集合,并使用条件随机场模型进行汉语功能块的自动标注.实验数据来自清华大学TCT语料库,并且按照8∶2的比例切分形成训练集和测试集.实验结果表明,与仅使用词层面信息的标注模型相比,基本块特征信息的适当加入可以显著提高功能块标注性能.当使用人工标注的基本块信息时,汉语功能块自动标注的准确率达到88.47%,召回率达到89.93%,F值达到89.19%.当使用自动标注的基本块信息时,汉语功能块的标注的准确率为84.27%,召回率为85.57%,F值为84.92%.
- 李国臣王瑞波李济洪
- 关键词:条件随机场模型句法分析
- 一种均衡的RHS交叉验证被引量:2
- 2015年
- 在统计机器学习中,交叉验证方法利用对一个数据集的多次切分,来构造多次重复实验,并以此估计机器学习模型的预测误差.然而交叉验证估计的稳定性与数据集的切分方式有着密切的关系.也就是说,不同的切分方式会导致训练集中所含共同样本的个数不同,当共同样本较多时,交叉验证估计具有较大的方差.为此构造了一种均衡的RHS(Repeated Half-sampling)交叉验证,使得训练集所含共同样本的个数的总和最小,并且任意两个切分之间的共同样本个数保持均衡,进而降低泛化误差估计的方差,进而有效地提高泛化误差估计的稳定性.从理论上证明了6次均衡的RHS交叉验证估计的方差小于组块3×2交叉验证,并且进一步通过模拟实验验证这一结论.同时,从实验结果可以说明6次均衡的RHS交叉验证估计的方差小于随机RHS交叉验证估计的方差.进一步,在真实数据集上大量的实验验证了这些结论.
- 杨静王瑞波李济洪
- 关键词:泛化误差
- 汉语框架自动识别中的歧义消解被引量:11
- 2011年
- 该文研究了汉语框架自动识别中的歧义消解问题,即对给定句子中的目标词,基于其上下文环境,从现有的框架库中,为该目标词自动标注一个合适的框架。该文将此任务看作分类问题,使用最大熵建模,选用词、词性、基本块、依存句法树上的若干特征,并使用开窗口技术和BOW策略,以目前汉语框架语义知识库中的88个词元的2 077条例句为训练、测试语料,进行了3-fold交叉验证实验,最好结果取得69.28%的精确率(Accuracy)。
- 李济洪高亚慧王瑞波李国臣
- 关键词:框架语义最大熵模型
- 基于均衡7×2交叉验证的模型选择方法被引量:2
- 2013年
- 交叉验证策略广泛应用于分类问题的模型比较和模型选择中.文章提出一种均衡7×2交叉验证并给出了相应的构造方法.文章以分类回归树(CART)为考察模型,对比了采用均衡7×2交叉验证、组块3×2交叉验证、标准5折和10折交叉验证在模型选择中的性能.模拟结果表明,在小规模数据集上,均衡7×2交叉验证方法选择到真模型的概率明显高于其余三种交叉验证的选择方法.
- 杜伟杰王瑞波李济洪
- 基于词的分布式实值表示的汉语基本块识别被引量:4
- 2013年
- 基于神经语言模型生成汉语词语的实值向量表示,称为词语的分布式表示,相应地以这种分布式表示构造的词特征称为分布式词特征.将这种分布式词特征替换基本块识别任务中所常用的条件随机场模型中的词特征,在清华大学TCT语料上进行了汉语基本块识别任务实验,结果表明:在仅使用词窗口[-2,2]的词特征的模型中,和使用词窗口[-2,2]+词性特征的模型中,采用分布式词特征比传统的词特征的模型的标记精度分别高38.01%,1.86%,说明词语的分布式表示对汉语基本块识别任务是有作用的.
- 侯潇琪王瑞波李济洪
- 基于最大熵模型的中文阅读理解问题回答技术研究被引量:7
- 2008年
- 该文基于山西大学自主开发的中文阅读理解语料库CRCC v1.1版,根据问句和候选答案句的对应关系,构建了词层面以及句法层面共计35个特征,基于最大熵模型对中文阅读理解问题回答进行了建模,在35个特征全部加入最大熵模型的情况下,测试集上得到了75.46%的HumSent准确率。考虑到特征取值之间的相关性对权重估计的影响,笔者先对35个特征观测值矩阵进行主成分降维,选择适当的主成分个数重构特征,然后再使用最大熵模型进行建模,在测试集上的HumSent准确率达到80.18%.实验结果表明,在阅读理解问答系统中,采用特征的主成分降维方法,能有效融合全部特征信息,回避了最大熵模型中特征筛选的过程,并且提高了阅读理解系统的准确率。
- 李济洪王瑞波王凯华李国臣
- 关键词:计算机应用中文信息处理问答系统最大熵模型主成分
- 融合分词隐层特征的汉语基本块识别
- 2016年
- 该文以字为基本标注单位,构建了一种汉语基本块识别的神经网络学习模型。模型联合分词任务的神经网络学习模型与基本块识别任务模型,将分词任务模型中学习得到的隐层特征融入基本块识别的模型中,两模型相互交替优化学习模型参数,并实现了以整句似然函数(而非单字似然函数)作为优化目标的算法。实验结果表明:1)以整句似然函数为优化目标的基本块识别的F值比单字似然情形要高出1.33%,特别是在多字块识别中,其召回率比单字似然情形要高出4.68%;2)融合分词任务模型中的隐层特征的汉语基本块识别模型的结果比不做融合的模型要高出2.17%,说明融合分词隐层特征的交替联合学习方法是有效的。
- 李国臣刘展鹏王瑞波李济洪
- 关键词:神经网络模型
- 交叉验证中类别切分不均衡对分类性能的影响分析被引量:3
- 2013年
- 交叉验证被广泛应用于模型的泛化误差估计,特别是2折交叉验证在分类模型比较中得到广泛的应用.主要针对Logistic分类回归模型采用2折交叉验证的不同切分方法且特征(自变量)取值均为0,1时对模型性能的影响进行了模拟.结果表明,当2折交叉验证的两份数据中的类别分布相同或相近时,准确率、召回率、F值及精确率的2折交叉验证估计的偏差最小,且估计的偏差随着2折交叉验证中类别的差异增加而增加.当2折交叉验证中数据的类别分布相差较大时,模型性能的估计明显地变差.因此,采用交叉验证切分数据时,应尽量保持每份数据的类别分布与总体一致.
- 赵存秀王瑞波李济洪
- 基于词分布式表征的汉语框架排歧模型被引量:7
- 2017年
- 框架排歧是根据句子中目标词的上下文语境,从框架库中为该目标词自动选择一个合适的框架。该任务在一定程度上解决了动词中一词多义的现象。该文基于词语及句子的分布式表征,提出了基于距离和基于词语相似度矩阵的框架排歧模型。与传统方法相比,该模型有效避免了人工选择特征,克服了特征空间维度过高、特征之间没有关联性等缺点,使框架排歧的准确率达到65.71%。并与当前最好的模型,进行显著性和一致性检验,进一步验证了词分布式表征对框架排歧任务的有效性。
- 张力文王瑞波李茹李茹
- 汉语框架语义角色的自动标注被引量:42
- 2010年
- 基于山西大学自主开发的汉语框架语义知识库(CFN),将语义角色标注问题通过IOB策略转化为词序列标注问题,采用条件随机场模型,研究了汉语框架语义角色的自动标注.模型以词为基本标注单元,选择词、词性、词相对于目标词的位置、目标词及其组合为特征.针对每个特征设定若干可选的窗口,组合构成模型的各种特征模板,基于统计学中的正交表,给出一种较优模板选择方法.全部实验在选出的25个框架的6692个例句的语料上进行.对每一个框架,分别按照其例句训练一个模型,同时进行语义角色的边界识别与分类,进行2-fold交叉验证.在给定句子中的目标词以及目标词所属的框架情况下,25个框架交叉验证的实验结果的准确率、召回率、F1-值分别达到74.16%,52.70%和61.62%.
- 李济洪王瑞波王蔚林李国臣
- 关键词:语义角色标注正交表条件随机场