您的位置: 专家智库 > >

申瑞珉

作品数:6 被引量:26H指数:3
供职机构:湘潭大学数学与计算科学学院更多>>
发文基金:国家自然科学基金湖南省自然科学基金湖南省科技厅项目更多>>
相关领域:自动化与计算机技术理学更多>>

文献类型

  • 4篇期刊文章
  • 2篇学位论文

领域

  • 5篇自动化与计算...
  • 1篇理学

主题

  • 6篇多目标
  • 5篇多目标进化
  • 5篇多目标优化
  • 5篇进化算法
  • 4篇多目标进化算...
  • 3篇高维
  • 1篇动态多目标优...
  • 1篇软件平台
  • 1篇平均功耗
  • 1篇网络
  • 1篇网络生存
  • 1篇网络生存时间
  • 1篇无线传感
  • 1篇无线传感器
  • 1篇无线传感器网
  • 1篇无线传感器网...
  • 1篇协作MIMO
  • 1篇进化
  • 1篇进化模型
  • 1篇环境模型

机构

  • 6篇湘潭大学
  • 2篇教育部

作者

  • 6篇申瑞珉
  • 3篇郑金华
  • 3篇邹娟
  • 1篇李密青
  • 1篇李哲涛
  • 1篇袁琦钊
  • 1篇裴廷睿
  • 1篇荣伟
  • 1篇彭舟

传媒

  • 1篇电子学报
  • 1篇计算机学报
  • 1篇小型微型计算...
  • 1篇软件学报

年份

  • 3篇2015
  • 1篇2014
  • 1篇2013
  • 1篇2012
6 条 记 录,以下是 1-6
排序方式:
一种基于信息分离的高维多目标进化算法被引量:7
2015年
高维多目标优化是指对目标维数大于三维的多目标问题(multi-objective optimization problem,简称MOP)进行优化.大多数传统的多目标进化算法采用Pareto支配关系指导搜索,很难在高维多目标优化问题上得到较为理想的结果.为此,提出了一种基于信息分离的高维多目标进化算法(multi-objective evolutionary algorithm based on information separation,简称ISEA).该算法在目标空间中将原坐标系进行旋转,使第1条坐标轴与向量(1,1,…,1)T平行.ISEA定义转换坐标的第1个坐标值为收敛信息(convergence information,简称CI),剩余的坐标代表个体分布信息(diversity information,简称DI).同时,采用一种基于分层选择的邻域惩罚机制,利用一种由两个超圆锥组成的邻域形状保持种群的分布性,当个体被选入归档集后,其邻域内的个体将被惩罚进入下一层选择,防止邻近的个体同时被选入归档集.邻域形状的第1部分利用分布信息覆盖邻近的个体,第2部分覆盖边界上的差个体.与NNIA,?-MOEA,MSOPS,AR+DMO以及IBEA这5种经典算法进行了比较.实验结果表明,ISEA在处理高维多目标优化问题时具有良好的收敛性和分布性.
郑金华申瑞珉李密青邹娟
关键词:多目标优化进化算法
多目标优化的进化环境模型及实现被引量:7
2014年
传统多目标进化算法主要是模仿生物自身的进化过程,没有考虑环境对进化的作用,缺乏能动的、指导性的搜索.提出一种基于进化环境的多目标进化模型,利用进化环境记录群体进化过程中产生的知识信息,并反过来指导群体搜索,实现环境与群体的共同进化.此外,给出基于进化环境的多目标进化模型的一种算法实现,利用环境域和单元域表示进化环境,设置了一组环境规则,从而实现进化环境对进化群体的约束、促进和导向作用.通过与5个代表性经典多目标进化算法,对12个具有不同特征和不同求解难度的测试函数,在Generational Distance、Hypervolume和Inverted Generational Distance三项性能指标上进行比较实验,验证了文中所提出的算法具有良好的收敛性和综合性能.
郑金华申瑞珉李密青邹娟袁琦钊
关键词:进化模型多目标优化多目标进化算法
协作MIMO无线传感器网络中多目标进化算法分析被引量:3
2013年
现有的基于协作MIMO的无线传感器网络(WSN)传输策略设计往往只注重节能方面,追求网络生存时间的最大化,而忽略了网络数据速率在大部分实际工程应用中的重要性.基于线性多跳协作MIMO传输模型,分析了该模型的数据速率、平均功耗及生存时间并提出基于多目标进化算法——NSGA-Ⅱ的WSN优化算法.在NSGA-Ⅱ中,通过对种群进行初始化,利用二元锦标赛法选择,单点交叉,动态变异等操作进行进化,并采取利用最小生成树的权值表示拥挤度的方法保证种群的分布性.仿真结果表明:相比于聚集函数法,NSGA-Ⅱ所获得的网络生存时间更长.更重要的是,仿真给出一些能达到网络数据速率与生存时间两者同时最大且使网络功耗处于较小水平的参数值,能有效地指导于WSN工程应用.
荣伟裴廷睿李哲涛申瑞珉
关键词:无线传感器网络网络生存时间
基于引导个体的预测策略求解动态多目标优化问题被引量:10
2015年
很多现实的优化问题都是动态多目标问题,这类问题不仅具有多个目标,并且也受环境的影响不断变化.本文基于引导个体的预测策略提出一种新的求解动态多目标优化问题的策略.通过记录每次环境变化初始时和种群自主进化一小段时间后种群中心点位置的前后变化,预测最优解的所在方向.同时根据在该方向上均匀分布的若干检测个体,选出一串非支配的个体作为当前环境下的引导个体.为了避免陷入局部最优,在选出的引导个体周围一个小的区域半径内随机产生若干伴随引导个体.实验结果表明,新策略具有更快的响应环境变化的能力.
郑金华彭舟邹娟申瑞珉
关键词:动态多目标优化进化算法
高维多目标进化算法研究
高维多目标优化是指对目标个数大于三的多目标优化问题进行优化。大多数传统的多目标进化算法,如NSGA-II和SPEA2,采用Pareto支配关系指导搜索;同时采用各种分布性保持策略作为算法的辅助策略,以此维持种群的多样性。...
申瑞珉
关键词:多目标优化多目标进化算法
文献传递
高维多目标进化算法及其软件平台研究
现实世界中存在大量的多目标优化问题(multi-objective optimization problems,MOPs),它们具有多个需要同时优化且相互冲突的目标。与单目标优化不同,多目标进化算法(multi-obje...
申瑞珉
关键词:多目标进化算法多目标优化软件平台
共1页<1>
聚类工具0