在计算机仿真领域,运用重新组合等相关技术,可以对已经捕捉的人体运动数据实现重用,以较低的成本产生新的运动。但是,由于运动库的数据庞大,对其实施有效检索成为一个重要问题。以倒排表数据结构为基础,设计出一套针对人体运动的检索算法。不同于传统的最长公共子序列(Longest Common Subsequence,LCSS)的度量算法,提出了一种限制最小匹配率ρmin的有限最长公共子序列(Limited-LCSS)算法,并在此基础上针对倒排表的数据结构特点对算法进行了优化,显著的提高了算法的效率。实验表明提出的检索方法具有较好的速度和准确性。