金玉
- 作品数:3 被引量:26H指数:2
- 供职机构:四川大学计算机学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于综合相似度迁移的协同过滤算法被引量:11
- 2018年
- 数据稀疏性问题是传统协同过滤算法的主要瓶颈之一.迁移学习通常是利用目标领域与辅助领域的潜在关系,对辅助领域进行知识迁移,以此来提高目标领域的推荐质量.现有的基于相似度迁移模型,普遍只利用了用户评分信息,并且在评分相似度计算上忽略了用户评分标准个性差异.针对这些问题,提出了一种综合相似度迁移模型,在相似度计算上,即利用了用户评分信息同时也利用了用户属性信息,并且考虑了用户间对满意度的打分标准的差异性,采用了用户评分分布一致性来衡量用户评分相似度的方法,提高了相似度计算的准确性,从而提高了数据迁移的质量.实验结果表明,该模型较其他算法能比较有效地缓解数据稀疏性问题.
- 金玉崔兰兰孙界平琚生根王霞
- 关键词:数据稀疏协同过滤
- 基于Co-training的用户属性预测研究
- 2017年
- 针对当前基于第三方应用数据进行用户属性预测算法研究,其较少考虑应用前台实际使用时长问题,由此,本文在应用的使用频率及使用时长的基础上,构造了应用前台均使用时长特征,该特征能进一步刻画用户对应用的兴趣度;同时,为充分利用大量未标注数据,从多角度特征对用户属性进行预测,由此本文采用了Co-training框架,该框架包含两个均由栈式自编码器与神经网络相结合的网络结构。实验过程中,对于栈式自编码算法,先利用未标注的数据对网络进行参数初始化,使得网络参数处于一个较优的位置,再利用有标注的数据,采用基于准确率的梯度下降算法,对网络参数进行更新,最终达到收敛。实验结果表明,本文算法在准确率、召回率、F1值上均有所提高。
- 金玉王霞琚生根孙界平刘玉娇
- 关键词:用户属性CO-TRAINING梯度下降算法
- 基于深度学习的中文微博命名实体识别被引量:15
- 2016年
- 针对微博用语不规范、噪声多、更新快、缩略语多,且数据量大等相关特点,提出基于深度学习的方法进行微博命名实体的识别。首先利用大量的未标注的微博信息对自动编码器训练,获得抽象特征,随后将这些特征作为深度学习网络的输入,最后得出句子中每个字的类标。在进行自动编码器训练的过程中,使用卷积方法替代窗口移动方法,以获取句子中的长依赖信息。通过对新浪微博数据的实验结果表明,该深度学习方法能够提高微博中命名实体识别的F1值,说明了本文算法的有效性。
- 刘玉娇琚生根李若晨金玉
- 关键词:卷积命名实体识别