在基于核磁共振(NMR)的代谢组学数据分析中,尺度缩放是关键的预处理步骤之一,其主要目的是通过调整数据的方差结构,改善后续的多变量统计分析的结果。从信息熵的角度出发,利用KullbackLeibler(K-L)散度来度量不同实验分组的生物样品的1 H NMR波谱数据的差异程度,并结合单位方差缩放法,提出一种基于K-L散度的尺度缩放方法。该方法先利用单位方差法将数据各变量的标准差调整到同一水平上,再利用K-L散度对各变量进行有监督地加权,增强重要变量、减弱无关变量。由于K-L散度是在概率分布的意义上度量数据间的差异程度,且对于高斯和非高斯分布的数据均适用,因此能更准确地度量不同实验分组样品的1 H NMR波谱数据的差异性,从而更有效地地对谱数据的重要变量进行识别和加权。人群尿液1 H NMR波谱数据的分析结果表明,基于K-L散度的尺度缩放方法能有效抑制噪声变量,同时很好地区分特征变量和非特征变量;提高主成分回归(PCR)模型的判别能力;改善偏最小二乘回归判别分析(PLS-DA)模型的解释能力、预测能力以及对特征代谢物的辨识能力。