机械故障特征具有周期性、稀疏性以及被噪声污染严重特点,而大部分特征抽取方法(如局部线性嵌入(locally linear embedding,LLE)、局部切空间排列(local tangent space alignment,LTSA))性能往往受到噪声影响.因此,抑制振动信号噪声、抽取有效故障特征成为机械故障检测的关键.本文提出融合奇异值分解与周期重叠簇稀疏(reweighted singular value decomposition integrating with periodic overlapping group sparsity,RSVD-POGS)的机械故障稀疏特征抽取方法.该方法首先利用RSVD把多成分振动信号分解为奇异成分集合,并使用周期调制强度(periodic modulation intensity,PMI)准则选择有效奇异成分,然后使用POGS从奇异成分提取稀疏周期冲击特征,并由选择的奇异成分重构原始信号,增强周期稀疏故障信号特征.最后,使用低SNR仿真周期冲击信号对RSVD-POGS算法与POGS方法进行对比,并将RSVD-POGS方法应用于实验台轴承正常和故障信号的特征提取中.实验结果表明,该算法可以有效地提取稀疏微弱故障特征,具有较大的优越性.
机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了基于集成局部均值分解(Ensemble local means decomposition,ELMD)与改进的稀疏多尺度支持向量机(Sparse multiscale support vector machine,SMSVM)的机械故障诊断方法。该方法首先使用自适应非线性、非平稳信号处理方法 ELMD把多模态调制故障信号分解成为多个单模态解调信号,有效地增强了故障特征。把压缩感知和多尺度分析技术融合于故障模式分类中,提出改进SMSVM旋转机械故障识别方法,提高多类机械微弱故障数据模式识别性能。该方法融合稀疏表示、多尺度分析和SVM的优点,无需求解复杂的优化问题,易于推广至更多尺度SVM,具有计算量少、泛化性与鲁棒性好、物理意义明显等优点。人工数据和实验设备数据验证了本文算法的优越性。