Binary mixtures of 1,3-dialkylimidazolium based ionic liquids (ILs) and water were selected as solvent systems to investigate the solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators at 25 ℃. Empirical solvatochromic pa- rameters, dipolarity/polarizability (π^*), hydrogen-bond donor acidity (α), hydrogen-bond acceptor basicity (β), and Reichardt's polarity parameters (ET^N) were measured from the ultraviolet-visible spectral shifts of 4-nitroaniline, 4-nitroanisole, and Reichardt's dye. The solvent properties of the IL-water mixtures were found to be influenced by IL type and IL mole fraction (XIL). All these studied systems showed the non-ideal behavior. The max- imum deviation to ideality for the solvatochromic parameters can be obtained in the XIL range from 0.i to 0.3. For most of the binary mixtures, the π^* values showed the synergistic effects instead of the ETN, α and β values. The observed synergy extent was dependent on the studied systems, such as the dye indicator and IL type. A preferential solvation model was utilized to gather information on the molecular interactions in the mixtures. The dye indicator was preferentially solvated on the following trend: IL〉IL-water complex〉water.