应用高通量转录组测序技术对哈茨木霉产厚垣孢子前期和中期两个不同转录本进行测序,获得12186个unigenes,平均长度为1483 bp。被注释到GO(gene ontology)数据库的unigenes有6042个。通过与KEGG(kyoto encyclopedia of genes and genomes pathway database)数据库比对,有5151个unigenes被注释到239条KEGG代谢途径中。比较两个样本,共有差异表达基因(DEG)6329个,包括3602个上调基因,2727个下调基因。其中几丁质酶基因16个,13个上调、3个下调;几丁质合成酶基因4个,均上调;葡聚糖酶基因21个,11个上调、10个下调。KEGG富集分析显示,氨基糖和核苷酸的糖代谢途径涉及的差异表达基因最多,有23个;其次是淀粉和糖代谢途径,有14个差异表达基因参与。推测这两条代谢途径以及相关的差异表达基因可能与厚垣孢子形成有关。本研究为深入研究哈茨木霉Th-33厚垣孢子的形成机制奠定了基础。
For exploring the influences of application and residue of chemical fungi- cides on chlamydospore preparations of Trichoderma spp., the effects of seven chemical fungicides on chlamydospore germination and mycelia growth of two bio- control fungi T. harzianum 610 and T. Iongibrachiatum 758 were studied. Carben- dazim, tebuconazole and difenoconazole showed strong toxicities, thiram and car- bexin showed moderate toxicities, and metalaxyl showed Mycelia growth of the two strains was more sensitive to most tested fungicides than those of chlamydospore germination. Chlamydospore germination of 610 was more sensitive to tested fungicides than those of 758, and mycelia growth of 758 was more sensitive to most tested fungi- cides than those of 610. Among the seven fungicides, 98% carbendazim had the strongest effects (ECru values were 1.64 and 0.05μpg/ml), and 70% pentachloroni- trobenzene had the weakest effects (EC50 values were 1.64 and 0,05 μg/ml) for chlamydospore germination and mycelia growth of 610. As for 758, 98% carbendaz- im had the strongest inhibitory effects and 95% metalaxyl had the weakest inhibitory for chlamydospore germination of 756 (EC50 values were 0.62 and 1 108.61 μg/ml respectively), whereas 96.2% tebuconazole showed the strongest inhibitory effects for mycelia growth of 758 (EC= value was 0.32μg/ml), and 95% metalaxyl was the weakest (EC= value was 1 206.29 μg/ml). According to the applied concentration of different fungicides in practice, we concluded that chlamydospore preparations of 610 and 758 could not be combined with carbendazim, tebuconazole, thiram and carboxin for controlling plant diseases, and the pesticide residues to the biocontrol effects should be kept in mind. Chlamydospore preparations of 610 and 758 can be and difenoconazole for controlling plant dis- eases, 758 chlamydospore preparations and germinated chlamydospore of 610 can be combined with metalaxyl for controlling plant diseases, and pesticide residue risk was not serious.