随着带有GPS定位功能的智能手机越来越普遍,人们喜欢分享他们的地理位置或者通过评论某个地方的商品从而留下用户的足迹,这引发了以共同的兴趣点(POIs)为中心,基于地理位置信息的社交网络研究(location based social network,LBSN).社交网络中的一类典型应用是推荐系统,而推荐系统中最常见的问题是冷启动,即在用户很少点评商家或分享评论时如何为他推荐感兴趣的商家.为解决冷启动问题,提出了一种在社交网络中基于兴趣圈的社会关系挖掘推荐算法.兴趣圈是由所有访问某一类别商品的用户群及他们之间的社会关系构成的社交联系,不同的用户访问同一类别商品表明他们对此类别具有相似兴趣.该方法在传统矩阵分解模型的基础上考虑不同的兴趣圈上的社会关系,使用的社会关系包括朋友关系(显性关系)和相关专家(隐性关系),并用它们作为规则化项来优化矩阵分解模型.实验数据集来自第5届Yelp挑战赛和自己爬取的Foursquare数据集,提出的方法与已有模型进行了充分的实验对比分析,结果表明,我们的模型特别是在解决冷启动问题方面优于多种现有的方法.
作为目前最成功的主流推荐方法,奇异值分解算法(SVD)将已知的海量数据建模并通过矩阵分解降维处理来得到有效信息;非负矩阵分解(NMF)则通过分解出非负矩阵元素来解释特征意义。这两种较为成功的方法均通过对显性反馈信息进行基于矩阵分解的处理得到用户的喜好信息来进行群体推荐。然而,仅凭用户的显性反馈信息有时无法准确反映用户的真实喜好。为解决上述问题,提出了一种针对这两种模型的改进方法,将隐性特征和基于隐性特征的群体权重计算方法融合进经典的矩阵分解算法,其中隐性特征可以完善用户的喜好信息,基于隐性特征的群体权重计算方法则根据群体的特点给予用户相应的权重,使得推荐的准确率得到提升。对该方法在KDD Cup 2012Track1中的腾讯微博数据集上进行测试,实验结果表明在该数据集上融合方法的平均绝对偏差(MAE)和准确率要优于SVD算法与NMF算法,推荐的性能有较明显的提升。