多标签特征选择能够有效去除冗余特征并提升分类精度,是解决“维数灾难”问题的有效方法.然而,已有的多标签特征选择算法是对所有标签选择出相同的特征,忽略了标签与特征之间的内在联系.事实上,每个标签都具有反映该标签特有属性的特征,即类属特征.提出一种基于图拉普拉斯的多标签类属特征选择(multi-label label-specific feature selection based on graph Laplacian,LSGL)算法.对于每个类别标签,基于拉普拉斯映射获得数据的低维嵌入,再通过稀疏正则化获得数据空间到嵌入空间的投影矩阵,接着通过分析矩阵系数确定每个标签相应的类属特征,最后使用类属特征进行分类.在5个公共多标签数据集上的多标签特征选择与分类实验结果证明了所提算法的有效性.
针对基于稀疏回归的多标签特征选择方法中数据的特征和标签之间线性关系假设不成立的问题,提出一种基于依赖最大化和稀疏回归的多标签特征选择方法(multi-label feature selection with dependence maximization and sparse regression,DMSR)。构建数据的低维子空间,最大化低维空间与数据的标签空间之间的依赖性,使用希尔伯特-施密特独立性准则作为依赖性的计算依据,将数据从特征空间映射到该低维空间,设计一种交替优化的算法对稀疏回归模型进行求解,得到用于特征选择的投影矩阵。在多个不同类型的多标签数据集上的实验结果表明,所提算法的性能优于其它对比算法。