Nanosized Li4Ti5O12 powders are synthesized by a polymerization-based method using ti- tanium butoxide and lithium nitrate as precursors and furfuryl alcohol as a polymerizable solvent. The prepared samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Braunauer-Emmett-Teller (BET) analysis. The electrochemical performances of these Li4Ti5O12 powders are also studied. The effect of different surfactants including citric acid, polyvinylpyrrolidone, and cetyltrimethyl ammonium bromide on the structure and properties is also investigated. It is found that pure spinel phase of Li4Ti5O12 is obtained at an annealing temperature of 700 ℃ or higher. The use of surfactants can improve the powder morphology of nanosized particles with less agglomeration. With suitable annealing temperature and the addition of surfaetant, Li4Ti5O12 powders with high BET surface area and favorable electrochemical performance can be obtained.