The Fe78Si9B13 glassy ribbons were compressed at room temperature with different pressures. The thermal and corrosion behaviors were investigated using various experimental techniques. The X-ray diffraction (XRD) and dilatometer (DIL) results show that the Fe78Si9B13 ribbons are in full amorphous state after pressing and the amount of free volume increases monotonically with increasing pressure. The corrosion resistance of the glassy alloys in various solutions decreases after compression at 10 MPa, but increases after compression at 20 MPa. The non-monotonic change of corrosion resistance is consistent with the result of electrical resistivity, which can be explained by the combining action of free volume that is introduced by the compression and the segregation of Si atoms in the samples.