直流输电系统的内过电压主要通过金属氧化物避雷器(metal oxide arrester,MOA)加以限制,避雷器在内过电压下的保护特性对确定设备的操作冲击绝缘水平具有重要意义。根据±1 100 k V主回路接线、避雷器配置、交直流系统参数等,建立了±1 100 k V系统内过电压计算模型。对避雷器电压和电流波形进行仿真,对避雷器电流的波头时间进行统计。统计结果为:内过电压下通过避雷器电流的波头时间均不小于100μs,大于标准操作冲击电流的波头时间30μs,需要对较缓电流波头下避雷器的保护特性进行研究。为加以对比,对波形为316/814μs、30/60μs、8/20μs和1/4μs电流下的避雷器伏秒特性和伏安特性进行了试验研究。结果表明,同样电流下,1/4μs的伏安特性曲线高于8/20μs、30/60μs和316/814μs的曲线,而后三者的伏安特性曲线则区别不大;8/20μs、30/60μs和316/814μs的伏安特性相比,在0.1~1 k A电流范围内,30/60μs的伏安特性曲线比8/20μs和316/814μs的伏安特性曲线稍高。由于避雷器操作冲击电流的波头时间均不小于100μs,内过电压下避雷器取30/60μs电流波形下的伏安曲线是合适的,且是稍微偏严的。最后试验测试了避雷器电阻片在30/60μs操作冲击电流下的伏安特性。
在综合考虑波形特性、开关损耗、电压利用率及易实现性的基础上,提出一种新的最优移相脉宽调制(PWM)控制策略。从线电压出发,指出电压利用率的提高实质上是一个非线性规划问题,并就此非线性规划问题分8种情况进行讨论,系统地分析了谐波注入正弦脉宽调制(SPWM)电压利用率可以达到的极限值。采用数字仿真得出易于现场可编程门阵列(FPGA)实现的最优移相PWM调制波数据,并对其进行频谱分析。论证了移相法和堆波法在开关损耗上的一致性,以及移相法具有开关动作均匀、易于FPGA实现的特点。最后给出了最优移相PWM策略MATLAB仿真波形以及在SIGA(system in gate array)多电平高压变频器模型机中应用的实验波形。
简述准东—皖南±1 100 k V特高压直流输电示范工程在世界上具有输送容最大、电压等级最高、输送距离最远等优点,分析±1 100 k V直流工程系统试验需要研究内容以及需要完成的工作。借鉴±800 k V直流工程系统研究和现场系统试验的经验,结合±1 100 k V特高压直流输电工程的特点,对±1 100 k V特高压直流系统进行仿真计算分析研究,内容包括:±1 100 V特高压直流接入系统分析、系统稳定计算分析、过电压计算分析和直流控制保护计算分析。根据上述系统计算分析结果,提出系统安全稳定控制策略、过电压控制策略和直流系统控制保护策略。结合±1 100 k V直流工程受端高低端换流器分层接入系统的特点,提出±1 100 k V特高压直流输电工程系统试验方案。