Through optimizing the tensile-strained single quantum well (SQW) epitaxial structure and introducing doublechannel deep isolation groove etching technologies of linear laser diode arrays, GaAsP/GaInP/AlGaInP SQW separate confinement laser emitting structures are grown by low-pressure metal organic chemical vapor deposition and lcm-wide laser bars with 50% fill factor are fabricated. The cross sections of the channels are analyzed using scanning electron microscope. Mounted on passively cooled copper heat sinks, the laser bars achieve an output power of 259W in quasi-continuouswave (200μs pulse width and 2% duty cycles) operation at a driving current of 300A,which is the upper limit of power supply in our measurement setup,and no catastrophically optical mirror damage is observed. A peak power conversion efficiency of 52% is obtained at 104A with 100W output power.At a high-power operation of 100W,the spectrum of the bar has a centric wavelength of 807.8nm and full width at half maximum of 2.4nm. The full angles at half maximum power for fast axis and slow axis are 29.3°and 7.5° ,respectively.
980 nm波段的大功率半导体激光器作为抽运源有很重要的应用,但目前该类器件存在光束质量差和谱宽较宽的问题,影响其抽运效率和稳定性。为提高大功率半导体激光器的抽运效率,就要减小其光谱宽度,提升光束质量。而大功率基横模分布反馈激光器(DFB)通过在器件内部引入分布反馈光栅可以实现窄线宽激光的波长稳定输出,并通过优化脊型波导条件来实现基横模模式输出,提升光束质量。测试该器件的光电特性,1000μm腔长器件的阈值电流约为6 m A,斜率效率为0.71 W/A,最大稳定输出功率为130 m W。该激光器的波长随温度漂移系数为0.064 nm/K;对其远场发散角进行测量,得到快轴发散角为34°,慢轴发散角为6.3°。