本文利用60Coγ源和兰州重离子加速器,开展不同累积剂量下,静态随机存储器(static random access memory,SRAM)单粒子效应敏感性研究,获取不同累积剂量下SRAM器件单粒子效应敏感性的变化趋势,分析其辐照损伤机理.研究表明,随着累积剂量的增加,SRAM器件漏电流增大,影响存储单元低电平保持电压、高电平下降时间等参数,导致"反印记效应".研究结果为空间辐射环境中宇航器件的可靠性分析提供技术支持.
以65nm双阱CMOS(Complementary Metal Oxide Semiconductor)工艺的SRAM(Static Random Access Memory)为研究对象,采用三维数值模拟方法,结合SRAM中晶体管布局和邻近SRAM的相对位置,对寄生双极晶体管效应致纳米SRAM内部节点电势多次翻转的产生机制进行了深入阐述,对寄生双极晶体管效应致纳米SRAM发生MCU(Multiple Cell Upset)的影响因素进行了详细研究.发现寄生双极晶体管效应致SRAM内部节点电势多次翻转源于N阱中两个PMOS漏极电势的竞争过程,竞争过程与寄生双极晶体管效应的强弱相关,需综合考虑PMOS源极与N阱接触的距离、PMOS漏极与N阱的电势差两个因素.在纳米双阱CMOS工艺的SRAM中,PNP寄生双极晶体管效应对MCU起着重要作用.减小阱接触与SRAM单元的距离,可减弱邻近SRAM的寄生双极晶体管效应并降低MCU的发生概率,即使阱接触距离很近,特殊角度的斜入射和高LET(Linear Energy Transfer)值离子入射仍存在触发邻近SRAM的寄生双极晶体管效应并导致MCU的可能.
器件特征尺寸的减小带来单粒子多位翻转的急剧增加,对现有加固技术带来了极大挑战.针对90 nm SRAM(static random access memory,静态随机存储器)开展了中高能质子入射角度对单粒子多位翻转影响的试验研究,结果表明随着质子能量的增加,单粒子多位翻转百分比和多样性增加,质子单粒子多位翻转角度效应与质子能量相关.采用一种快速计算质子核反应引起单粒子多位翻转的截面积分算法,以Geant4中Binary Cascade模型作为中高能质子核反应事件发生器,从次级粒子的能量和角度分布出发,揭示了质子与材料核反应产生的次级粒子中,LET(linear energy transfer)最大,射程最长的粒子优先前向发射是引起单粒子多位翻转角度相关性的根本原因.质子能量、临界电荷的大小是影响纳米SRAM器件质子多位翻转角度相关性的关键因素.质子能量越小,多位翻转截面角度增强效应越大;临界电荷的增加将增强质子多位翻转角度效应.