WC?10Co?4Cr and Cr3C2?25NiCr coatings were deposited on H13 steel by high velocity oxy fuel (HVOF) spraying. To enhance the thermal stability of the WC?10Co?4Cr coating, NiCr powders were sprayed between the surface coating and substrate. The microstructures of the surface and cross section, thermal shock and wear resistance of these two coatings were investigated in detail. The carbon diffusion in the two coatings was explained from the view of the thermodynamic. And the adhesive strength of Cr3C2?25NiCr coating (64.40 MPa) is almost the same as that of WC?10Co?4Cr coating (61.69 MPa). The friction tests show that the Cr3C2?25NiCr coating has higher friction coefficient than the WC?10Co?4Cr coating at both 500 and 600 °C. The wear resistance of the Cr3C2?25NiCr coating is better than that of the WC?10Co?4Cr coating.
以Ni包覆Ti粉末为原始粉末,采用低温超音速火焰喷涂(low temperature High Velocity Oxygen Fuel,LT-HVOF)工艺沉积了Ti-Ni涂层。采用SEM、XRD等分析了Ti-Ni涂层显微结构和相组成,探讨了热处理工艺对涂层的相组成和显微结构影响。结果表明,在950℃×5 h下单质Ti与Ni完全合金化为NiTi(B2),Ni3Ti及Ti2Ni。在950℃×5 h+850℃×1 h+水冷,涂层中NiTi(B2)结晶度更高,涂层均匀致密。