植物组织中氮素气态挥发损失可能与其氮效率密切相关。探讨不同氮效率基因型水稻地上部NH3挥发特征及其与氮效率的关系,可为氮高效基因型的筛选提供理论依据和技术指标。本试验采用4个氮浓度进行盆栽液培,以扬稻6号、BG34-8、武育粳3号和珍汕97B等4个水稻品种为材料,研究水稻NH3挥发速率(ammonia volatilization rate,AVR)与氮利用效率的关系。结果表明,各基因型的AVR在各生育期的变化趋势不完全相同,扬稻6号和武育粳3号在幼穗分化期最高,分别为11.0和10.4mg N h-1pot-1,而BG34-8和珍汕97B的AVR在孕穗期最高,分别为22.5和23.4mg N h-1pot-1;对相同的基因型,随培养液中氮浓度的增加,植株的AVR增大,氮低效基因型珍汕97B和武育粳3号的增幅大于氮高效基因型扬稻6号和BG34-8;在培养液中氮浓度较高时(80mg N L-1)植株地上部AVR与氮素积累量、氮素籽粒生产效率、氮肥农学利用率和氮肥生理利用率呈显著或极显著负相关(r=-0.6768**、-0.6158*、-0.6667**、-0.8353**)。综上所述,水稻植株的AVR存在基因型差异,氮高效基因型的AVR较低;在高氮浓度液培条件下,较低的AVR可作为氮高效材料筛选指标。
Seedling characteristics such as leaf emergency, chlorophyll content, and height are important for early growth and also associated with seed size. Quantitative trait loci (QTLs) for rice (Oryza sativa L.) seedling characteristics (leaf length, chlorophyll content, seedling height) and seed size were identified with an attempt to explore the relationship between seedling characteristics and seed size, using a recombinant inbred population derived from a cross between Zhenshan 97A and Minghui 63. Two, one, five, four, four, and nine QTLs were detected for chlorophyll a content, total chlorophyll, length of the second seedling leaf, length of the third seedling leaf, seedling height, and seed size, respectively. The results indicated that four QTLs for seed size and four QTLs for seedling characteristics shared several similar regions (G359-RG532, C567-RG236, RZ403-R19, C371-C405a), respectively, suggesting a close association between seedling characteristics and seed size. Several chromosomal regions influencing seed size, however, had no effects on seedling characteristics, suggesting that it was possible to improve seedling vigor without increasing grain size.