为了实现对驾驶员人脸实时跟踪,提出了一种改进的Mean-shift算法。首先对人脸提取类Haar特征,使用类Haar特征构造弱分类器,然后根据样本的权值分布构造出强分类器,形成人脸检测分类器;由于光照变化等因素的影响,引入红外主动照明模式,通过隔离可见光照,基本上消除了光照变化对人脸检测造成的影响;针对Mean-shift算法在被跟踪目标发生快速移动时容易跟踪失败的缺点,改进了Mean-shift算法:当目标发生快速移动时,采用SSD(Sum of Square Dif-ference)算法进行全局搜索。以实际驾驶员人脸检测与跟踪实验为例进行了大量实验,提出的方法比Mean-shift算法的速度快、准确度高。
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.