Mean shift算法作为一种非参密度估计算法,目前已被广泛应用于视频运动目标的跟踪。该算法具有运算效率快,对目标变形、旋转不敏感,在部分遮挡的情况下有一定鲁棒性等特点,但该算法在运动目标速度过快的情况下,由于没有考虑利用目标的运动方向和速度信息,因此在跟踪快速运动目标时容易造成跟踪丢失。针对此问题,提出了一种基于运动矢量分析与Mean shift跟踪算法相结合的新方法,即首先对视频编码过程中产生的运动矢量进行概率统计分析,以获取目标运动方向与运动速度的估计值,再以此修正Mean shift运动候选区域的中心位置,使每次搜索开始时,候选中心位置更接近实际目标中心位置。通过与传统的Mean shift算法的跟踪实验比较可见,新算法不仅提高了快速运动目标跟踪的精度,而且减少了算法的搜索迭代次数,从而提高了运算效率。该算法可适用于智能视频监控设备中的视频编码与目标跟踪同时计算的情况,实验结果表明,该算法是有效可行的。
知识表示学习在关系抽取、自动问答等自然语言处理任务中获得了广泛关注,该技术旨在将知识库中的实体与关系表示为稠密低维实值向量。然而,已有的模型在建模知识库中的三元组时,或是忽略三元组的邻域信息,导致无法处理关联知识较少的罕见实体,或是在引入邻域信息时不能自适应地为每个实体抽取最相关的邻节点属性,导致引入了冗余信息。基于以上问题,该文在知识表示模型TransE的基础上提出了聚合邻域信息的联合知识表示模型TransE-NA(neighborhood aggregation on TransE)。该模型首先根据实体的稀疏度确定其邻节点数量,然后根据实体的邻边关系选取对应邻节点上最相关的属性作为实体的邻域信息。在链接预测和三元组分类任务上的实验结果表明,该文的模型效果超越了基线模型,验证了该模型能有效聚合邻域信息,缓解数据稀疏问题,改善知识表示性能。