The composite films consisting of hydroxyapatite (HAP) submicron particles embedded in the gel composed of the titania nanoparticles were prepared on commercial Ti6Al4V plates with titania buffer layer obtained by a spin-coating technique. The films were calcined in air at various temperatures, and the bioactivities of the films were investigated by immersing them in acellular simulated body fliud (SBF). X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), Field emission-scanning electron microscopy(FESEM) and Energy dispersive X-ray (EDS) analysis were employed to investigate the phase formation and structure of the films before and after immersion, and the variations of Ca and P contents in SBF were measured by Inductively Coupled Plasma Spectroscopy(ICP). The results show that the as-prepared films were dense, homogeneous, all well-crystallized, and there was a close interfacial bond between the film and the substrate. The characterisatics of the grown layer on the surfaces of the HAP/TiO2 films after immersion in SBF for different periods of time are specially discussed.