This paper reports on two years of measurement of soil respiration and canopy-root biomass in a Leymus chinensis community in the Xilin River basin of Inner Mongolia. Correlations between components of plant biomass and soil respiration rates were examined. From respiration data based on CO2 uptake by NaOH and corresponding root biomass values for each run of 10 plots, a linear regression of CO2 evolution rates on root dry weights has been achieved for every ten days. By applying the approach of extrapolating the regressive line to zero root biomass, the proportion of the total soil respiration flux that is attributable to live root respiration was estimated to be about 27% on average, ranging from 14% to 39% in the growing season in 1998. There were no evident relations between the total canopy biomass or root biomass and CO2 evolution rates, but a significant exponential relation did exist between tire live-canopy biomass and CO2 evolution rates.
Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.