朱海洋
- 作品数:3 被引量:2H指数:1
- 供职机构:浙江师范大学数理学院更多>>
- 发文基金:浙江省自然科学基金更多>>
- 相关领域:理学更多>>
- 图的L(p,q)-标号问题研究
- 图的L/(p,q/)-标号来源于Hale所介绍的频率分配问题作为研究背景。给定图G和两个正整数p≥q,G的一个m-L/(p,q/)-标号是映射f:V/(G/)→{0,1,2,…,m}使得对任意x,y∈V/(G/),若d/...
- 朱海洋
- 文献传递
- 图的L(p,q)-标号问题
- 2006年
- 令G为图,p,q为2个正整数,p≥q。G的一个L(p,q)-标号是映射f:V(G)→{0,1,2,…},使得对任意x,y∈V(G),若dG(x,y)=1则|f(x)-f(y)|≥p;若dG(x,y)=2则|f(x)-f(y)|≥q。G的一个m-L(p,q)-标号是标号f:V(G)→{0,1,2,…},使得对任意x∈V(G),有f(x)≤m。并称λp,q(G)=min{m|存在G的一个m-L(p,q)-标号}为图G的L(p,q)-数。本文给出k-退化图、G1和G2的联图G1∨G2及G1和G2的M-matched sum图G1M+G2的L(p,q)-数不同上界。最后给出仙人掌图,唯一圈图L(p,1)-数λp,1(G)的可达界。
- 朱海洋
- 关键词:仙人掌图
- 图的点强全染色被引量:2
- 2005年
- 图G(V,E)的正常k—全染色f叫做G(V,E)的k—点强全染色,当且仅当对任意的w∈V(G),N[w]中元素染不同颜色,其中N[w]={x|wx∈E(G)}∪{w}.并称XvTs(G)=min{k|存在G的k—点强全染色}为图G(V,E)的点强全色数.本文研究了K4-minor free图和外平面图的点强全色数.
- 朱海洋郝建修
- 关键词:FREE图外平面图平方图色数