目的行人再识别是指在一个或者多个相机拍摄的图像或视频中实现行人匹配的技术,广泛用于图像检索、智能安保等领域。按照相机种类和拍摄视角的不同,行人再识别算法可主要分为基于侧视角彩色相机的行人再识别算法和基于俯视角深度相机的行人再识别算法。在侧视角彩色相机场景中,行人身体的大部分表观信息可见;而在俯视角深度相机场景中,仅行人头部和肩部的结构信息可见。现有的多数算法主要针对侧视角彩色相机场景,只有少数算法可以直接应用于俯视角深度相机场景中,尤其是低分辨率场景,如公交车的车载飞行时间(time of flight,TOF)相机拍摄的视频。因此针对俯视角深度相机场景,本文提出了一种基于俯视深度头肩序列的行人再识别算法,以期提高低分辨率场景下的行人再识别精度。方法对俯视深度头肩序列进行头部区域检测和卡尔曼滤波器跟踪,获取行人的头部图像序列,构建头部深度能量图组(head depth energy map group,He DEMaG),并据此提取深度特征、面积特征、投影特征、傅里叶描述子和方向梯度直方图(histogram of oriented gradient,HOG)特征。计算行人之间头部深度能量图组的各特征之间的相似度,再利用经过模型学习所获得的权重系数对各特征相似度进行加权融合,从而得到相似度总分,将最大相似度对应的行人标签作为识别结果,实现行人再识别。结果本文算法在公开的室内单人场景TVPR(top view person re-identification)数据集、自建的室内多人场景TDPI-L(top-view depth based person identification for laboratory scenarios)数据集和公交车实际场景TDPI-B(top-view depth based person identification for bus scenarios)数据集上进行了测试,使用首位匹配率(rank-1)、前5位匹配率(rank-5)、宏F1值(macro-F1)、累计匹配曲线(cumulative match characteristic,CMC)和平均耗时等5个指标来衡量算法性能。�