The parameters of fluorescence induction kinetics and the maximal light-saturated net CO2 assimilation rate (P-sat) of the flag leaves of four cultivars of winter wheat (Triticum aestivum L.) were compared at three different developing stages for the first time. From the blooming stage to the milky stage, the quantum efficiency of PS II photochemistry (F-v/F-m) declined slightly only at the milk stage. The photochemical quenching co-efficient (qP), actual quantum yield of photosystem II (PS II)electron transport (Phi (PSII)) and P-sat decreased substantially (> 15%), while the non-photochemical quenching co-efficient (qN) increased significantly (> 100%). There existed a linear correlation between the Phi (PSII) and the P-sat (r = 0.918). The results indicate that with the senescence of the flag leaves of winter wheat the photosynthetic efficiency including that of the energy transport and the CO2 assimilation significantly decreased.