通过使用红外热像仪技术获得冬小麦冠层不同温度值,计算得到冬小麦主要需水阶段水分胁迫指标ICWSI(infrared crop water stress index)。并根据此数据,使用一次灌溉周期中3个时段不同的ICWSI的平均值作为输入因子,相应实测冬小麦产量作为输出因子,建立了BP神经网络模型对冬小麦的产量进行预测,本文采用三层BP神经网络,其拓扑结构为3-5-1,数据归一化处理后收敛性能增强。预测结果显示,平均相对误差最大只有3.42%;为了证实这一方法的优越性,同时建立了基于ICWSI和冬小麦产量关系的非线性函数的预测模型,预测结果与实际产量值进行比较,平均相对误差最大达到了18.87%。两种预测方法得到的不同预测结果表明,将红外热像仪技术与BP神经网络预测方法相结合,可以成功用来预测冬小麦产量,比使用非线性函数预测的效果更好,精度更高,可靠性更强,可以用于实际生产需要。