Spectral and photophysical investigations of 4'-(p-aminophenyl)-2,2':6',2″-terpyridine (APT) have been performed in various solvents with different polarity and hydrogen-bonding ability. The emission spectra of APT are found to exhibit dual fluorescence in polar solvents, which attributes to the local excited and intramolecular charge transfer states, respectively. The two-state model is proven out for APT in polar solvent by the time-correlated single photon counting emission decay measurement. Interestingly, the linear relationships of different emission maxima and solvent polarity parameter are found for APT in protic and aprotic solvents, because of the hydrogen bond formation between APT and alcohols at the amino nitrogen N25. Furthermore, the effects of the complexation of the metal ion with tpy group of APT and the hydrogen bond formation between APT with methanol at the terpyridine nitrogen N4-NS-N14 are also presented. The appearance of new long-wave absorption and fluorescence bands indicates that a new ground state of the complexes is formed.